Automatic Reaction – What Happens to Workers at Firms that Automate?

James Bessen ¹ Maarten Goos ² Anna Salomons ² Wiljan van den Berge ³

¹Boston University TPRI

²Utrecht University

³CPB Netherlands Bureau for Economic Policy Analysis

EconPol Europe, November 2019

Longstanding concern: Automation threatens work

- 1. Luddites—Skilled weavers in the 19th century
- 2. U.S. Labor Secretary James Davis in 1927
- Lyndon Johnson 1964 "Blue-Ribbon Presidential Commission on Technology, Automation, and Economic Progress"
- Wassily Leontief in 1982: Role of workers will diminish — like horses
- 5. At present

Automation and work

• Theory: automation technologies are labor-replacing

- Autor-Levy-Murnane '03, Acemoglu-Autor '11, Acemoglu-Restrepo '18, '19, Benzell-Kotlikoff-Lagarda-Sachs '18, Martinez '19, Susskind '17
- Existing empirical evidence on automation studies the (mostly aggregate) impact of the adoption of robots (mostly in manufacturing sectors):
 - Acemoglu-Restrepo '18, Dauth-Findeisen-Suedekum-Woessner '18, Graetz-Michaels '18, Koch-Manuylov-Smolka '19

• Direct empirical evidence on worker-level impacts of automation is lacking

Contributions of this paper

- Examine worker-level impacts of automation
- Oirectly measure firm-level automation expenditures across all private non-financial sectors
- Exploit the timing of automation events at the firm level for empirical identification
- **Organization** Solution **Organization Organization Organization**

Preview of main findings

Automation leads to displacement for incumbent workers

- Firm separation $\uparrow \rightarrow$ Non-employment $\uparrow \rightarrow$ Annual earnings \downarrow
- No wage scarring, but earnings losses only partially offset by benefits
- Affected workers more likely to switch industries and enter early retirement
- Selfcts are **pervasive** across industries and worker types
- Automation appears to be more labor-displacing than computerization

Agenda

🚺 Data

- Data sources
- Summary statistics for automation costs

Empirical approach

- 3 Worker-level impacts
- 4 Automation versus computerization

5 Conclusions

Data sources

Data from Statistics Netherlands Data deaming

• Annual survey of private non-financial firms, includes question on automation costs

- "Cost of third-party automation services"
- Official book-keeping entry
- Don't know the specific technology but e.g. self-service check-out, warehouse and storage systems, automated customer service, data-driven decision making, robot integrators, ...
- Administrative daily matched employer-employee records
- Years 2000-2016

Automation costs per worker over time

Agenda

- 2 Empirical approach
 - Defining automation spikes
 - Empirical design
- 3 Worker-level impacts
- 4 Automation versus computerization

5 Conclusions

Defining automation spikes

• Firm *j* has **automation cost share spike** in year τ if its real automation costs $AC_{j\tau}$ relative to real total operating costs (excl. automation costs) averaged across all years are at least thrice the average firm-level cost share (excluding year τ):

$$spike_{j\tau} = \mathbb{1}\left\{\frac{AC_{j\tau}}{\overline{TC_{j}}} \ge 3 \times \frac{\overline{AC_{j,t\neq\tau}}}{\overline{TC_{j}}}\right\}$$

where $1{\ldots}$ denotes the indicator function

• Firm-specific measure: identifies automation events that are large for the firm

Automation cost shares for spikers: spikes are events

Why do firms experience automation spikes?

• Spikes \rightarrow investment is lumpy

- Spikes arise when investment is **irreversible** and there are **indivisibilities** from fixed adjustment costs
 - Cooper-Haltiwanger-Power '99, Doms-Dunne '98, Nilsen-Schiantarelli '03, Pindyck '91, Rothschild '71
- Major **automation** investments likely include:
 - Irreversible investments in custom software and training;
 - Fixed adjustment costs from reorganizing production.

How do firms with automation spikes differ?

		Mean annua	al automation cost:	Mean annual
Firm type	N firms	total	per worker	empl. growth
No spike	26,015	€245,070	€1,389	0.0%
$\geq \! 1$ spike	10,497	€359,797	€2,547	1.8%

- Workers at a firm are treated in year τ if that firm undergoes an automation spike in year τ
- Workers employed at firms that spike at $\tau + k$ or later are used as **controls** for the years $\tau k 1$, where we choose k = 5
- Restrict sample to incumbent workers: \geq 3 yrs of firm tenure prior to automation event
- **Matching** controls and treated on pre-treatment income, sector, and calendar year Matching details

 \rightarrow **Identifying assumption:** timing of automation spikes is random from perspective of incumbent workers.

Estimating equation

$$y_{ijt} = \alpha + \beta F_i + \sum_{t \neq -1; t = -3}^{4} \gamma_t \times I_t + \sum_{t \neq -1; t = -3}^{4} \delta_t \times I_t \times treat_i + \lambda X_{ijt} + \varepsilon_{ijt},$$

- *i* workers; *j* firms; *t* time measured relative to automation event in year τ , i.e. $t \equiv year \tau$
- F_i worker fixed-effect; I_t time fixed-effect; X_{ijt} time-varying controls
- treat_i treatment indicator = 1 if worker i is employed at a firm experiencing an automation event at t = 0
- δ_t are period t treatment effects relative to pre-treatment period t = -1
- Se's clustered at the treatment level

Agenda

🚺 Data

3 Worker-level impacts

- Annual wage income for incumbent workers
- Firm separation, non-employment, and wage rates
- Other adjustment margins and effect heterogeneity

5 Conclusions

Annual wage income, percentages

Firm separation, hazard rates

Hazard rates for CG incumbents are 9.6% in t=0 and 8.8% in t=4 $(40\%\uparrow)$

Annual days in non-employment

Annual non-employment days for CG incumbents are 5.7 in t=0 and 28 in t=4 (20%)

Log daily wage

Wage change in log points for CG incumbents is 1.8 in t=0 and 5.4 in t=4

Robustness checks

Results are similar when eliminating other firm-level events estimates

- Removing firms with administrative changes (M & A's, take-overs, restructuring, ...)
- Removing firms with (suspected) management change
- Matching on firm-level pre-trend in employment
- Excluding outliers in firm-level employment growth
- Results survive a permutation test estimates
- Results are similar for different model specifications estimates
- Results are similar for different spike definitions estimates

Probability of switching industries

Industry switch probability for CG incumbents is 7% in t=0 and 30% in t=4 $(20\%\uparrow)$

Probability of early retirement

Early retirem. probability for CG incumbents is 0.2% in t=0 and 1.5% in t=4 (18%)

Summary of other results

- 13% of wage income losses are compensated by social security benefits estimates
- Oisplacement effects for incumbent workers pervasive across: vestimates
 - sectors
 - firm sizes
 - worker age & gender
 - workers' age-specific wage ranks
- No displacement effects for the firm's more recent pre-event hires
 estimates

Agenda

3 Worker-level impacts

4 Automation versus computerization

5 Conclusions

Comparison to computerization

- Are displacement effects specific to automation?
- Compare worker-level impacts of automation to computerization
- Use partially overlapping firm survey on computer investments
 - "All data-processing electronic equipment insofar as they can be freely programmed by the user, including all supporting appliances."
- Use same empirical design

Spike frequencies, overlapping sample

	Percentage of firms with event type:		
Nr of events	Automation	Computerization	
0	71.8	47.9	
1	22.5	41.9	
2	4.8	9.1	
3	0.7	1.1	
4	0.1	0.1	

Automation versus computerization

Agenda

- 2 Empirical approach
- Worker-level impacts
- 4 Automation versus computerization

5 Conclusions

Conclusions

Automation leads to displacement for incumbent workers

- Firm separation $\uparrow \rightarrow$ Non-employment $\uparrow \rightarrow$ Annual earnings \downarrow
- No wage scarring, but earnings losses only partially offset by benefits
- Affected workers more likely to switch industries and enter early retirement
- Effects are pervasive across industries
- Automation appears to be more labor-displacing than computerization

Appendices

Appendix: Defining treatment and controls

Bessen, Goos, Salomons, van den Berge

Automatic Reaction

Defining treatment and controls • sample construction

Appendix: Data cleaning

Data cleaning

We remove the following observations:

- Workers enrolled in full-time studies earning either less than EUR 5K annually or EUR 10 daily on average across the year
- Workers with earnings above EUR 500K annually or EUR 2K daily on average across the year
- Later, we further exclude workers at firms that have:
 - Not a single spike in automation cost shares
 - No event window (7 yrs of consecutive data)
 - Other events in the event window (mergers, takeovers, splits, restructuring)
 - Large (>90%) annual employment changes in the event window or also outside the event window

◀ Go Back

Estimation sample

- 36K unique firms have at least 3 yrs of automation cost data
- Of those, there are 10K unique firms that have at least one automation spike
- Of those, the estimation sample are 6K unique firms that have at least 7 yrs of consecutive data, i.e. have an event window
- Those 6K firms employ 1M unique incumbent workers annually on average, resulting in 8.4M worker-year observations in our estimations

Appendix: Matching details

CEM statistics

- Coarsened Exact Matching (CEM):
 - In each of the three pre-treatment years, separate strata for each 5 percentiles of annual wage + separate bins for the 99th and 99.5th percentiles
 - One year prior to treatment, matched workers must be observed in the same calendar year and work in the same sector
- 30,247 strata
- 98% of treated incumbents are matched; and 93% of control group incumbents are assigned a non-zero weight

🖪 Go Back

Appendix: Further summary statistics

Automation costs by firm size

◀ Go Back

	Cost per worker (€)		Cost share (%)		Nr of obs
Firm size class	Mean	SD	Mean	SD	Firm imes yr
1-19 employees	1,114	18,317	0.40	1.27	51,128
20-49 employees	803	4,426	0.42	1.23	86,036
50-99 employees	817	3,142	0.42	1.23	45,797
100-199 employees	930	2,452	0.44	0.92	29,073
200-499 employees	1,186	3,905	0.52	1.17	17,694
\geq 500 employees	1,656	6,884	0.74	1.53	10,609

Computer investment per worker over time

Appendix: Further robustness checks

Annual wage income (%): Randomization test •••••

Robustness to other events: Annual wage income (%)

◀ Go Back

Robustness to spike definition: Annual wage (%)

Robustness to model spec.: Annual wage (%)

Randomization test: Firm separation

Robustness to other events: Firm separation

Robustness to spike definition: Firm separation

Robustness to model spec.: Firm separation

Non-employment estimates, randomization test

Daily wage estimates, randomization test

Appendix: Further estimates

Annual total benefit income, levels

Annual benefit income for CG incumbents is EUR 186 in t=0 and EUR 781 in t=4

Annual benefit income split ••••

Probability of switching industries

Industry switch probability for CG incumbents is 7% in t=0 and 30% in t=4 $(20\%\uparrow)$

Probability of early retirement

Early retirem. probability for CG incumbents is 0.2% in t=0 and 1.5% in t=4 (18%)

Heterogeneity in average annual wage impact

(1) Age		(3) Gender		
Age <30 (ref)	-1.84	Male (ref)	-1.52***	
	(3.19)		(0.57)	
Deviations from reference	ce group for:	Deviations from reference group	for:	
Age 30-39	-0.24	Female	-1.39	
	(3.73)		(0.97)	
Age 40-49	0.42	(4) Sector		
	(3.60)	Manufacturing (ref)	-1.98**	
Age 50+	-1.20		(0.99)	
	(3.94)	Deviations from reference group	for:	
(2) Firm size	e	Construction 1.		
500+ employees (ref)	-1.53		(1.73)	
	(1.35)	Wholesale & retail trade	-2.23	
Deviations from reference	ce group for:		(1.51)	
200-499 employees	1.21	Transportation & storage	0.71	
	(1.77)		(1.79)	
100-199 employees	-2.19	Accommodation & food serving	4.57**	
	(1.77)		(2.32)	
50–99 employees	0.17	Information and communication	-0.25	
	(1.57)		(1.76)	
20-49 employees	-2.18	Prof'l, scientific, & techn'l act's	-0.24	
	(1.46)		(1.80)	
1-19 employees	-2.06	Administrative & support act's	1.55	
	(1.52)		(2.01)	

Bessen, Goos, Salomons, van den Berge

Automatic Reaction

Heterogeneity in average annual wage impact

(1) Overall age-specific wage quartile		(2) Within-firm age-specific wage quartile		
Bottom quartile (ref)	-2.26*	Bottom quartile (ref)	-1.06	
	(1.20)		(1.26)	
Deviations from reference group for:		Deviations from reference group for:		
Second quartile	0.17	Second quartile	-1.37	
	(1.10)		(1.12)	
Third quartile	0.48	Third quartile	-0.75	
	(1.39)		(1.31)	
Top quartile	0.09	Top quartile	-1.62	
	(1.65)		(1.56)	

Annual earnings for incumbents vs. recent hires

