Private bank deposits and macro/fiscal risk in the euro area

Michael G. Arghyrou

University of Piraeus and Council of Economic Advisors

María-Dolores Gadea University of Zaragoza

EconPol Conference, Brussels, 8 November 2019

1

Intra-EMU financial fragmentation

- Sovereign bond markets (Delatte et al 2017, Afonso et al 2018)
- Interbank money markets (Mayordromo et al 2015)
- Corporate bond markets (Zaghini 2016, 2017, De Santis 2018)
- Equity markets (Bley, 2009)
- Retail banking borrowing and lending rates (Arnold and Ewjik 2014, Rughoo and Sarantis 2014)

Literature on intra-EMU fragmentation has overlooked private bank deposits

- Surprising, given:
- Strong bias towards bank deposits in euro area, rendering deposits important for short- and long-term output movements (Ramirez, 2009)
- Policy focus on security of deposits, reflected in increased protection provided by national DGS (Engineer et al 2013, Demirgüç-Kunt et al, 2015) and debate on EDIS (European Commission 2015a, 2015b and Wolff 2016).
- Prima facie evidence that deposits present fragmentation (see Figure overleaf)
- Deposits are not recovering at the same speed with output, especially in the periphery

Private bank deposits, Jan 1999 – June 2017 (millions euro)

4

This paper:

- Focuses on under-researched fragmentation of bank deposits in euro area
- Tests three hypotheses:
- a) Aggregated bank deposits relative to Germany determined by macro/fiscal risk factors
- b) Relationship is time-varying
- c) Time-variation driven by level of macro/risk

Market discipline model (Berger, 1991)

- Price/quantity discipline on banks undertaking excessive risk
- MD pre-requisite for long-run solvency of banking sector
- Hence, MD important policy objective
- Large body of literature providing empirical support for MD:
- Flannery (1998), Martinez Peria, and Schmukler (2001), Sironi (2003), Nier and Baumann, (2006) and Bennett et al (2015).

Market discipline and bank stability under systemic banking crises – I

- MD weakens within national banking systems during systemic banking crises (Cubilas et al, 2012)
- Depositors discipline domestic banking market as a whole by withdrawing deposits and depositing them in banks abroad (Kleimeier et al, 2013).
- Doubts about government's capacity to support distressed banks: Large banks seen as too-big-to-save: Demirgüç-Kunt and Huizinga, 2013, Bertay et al 2013
- TBTS especially strong if public finances are already weak: Demirgüç-Kunt and Huizinga 2013, Cubilas et al 2017.
- Strong feed-back between fiscal and banking risk, especially in EMU (Acharya et al. 2014, Bocola 2016 and other studies)

Market discipline and bank stability under systemic banking crises – II

- During fiscal/macro banking crises deposits determined by country's fiscal/macro risk, rather than idiosyncratic bank characteristics (Levy-Yeyati et al, 2010; Cubilas et al, 2012, 2017
- Mutation of MD from deposits' reallocation within national banking systems to international deposits substitution; and/or increasing holdings of cash (Levy-Yeyati et al, 2010).
- Both effects have been observed in euro area:
- Cross-border deposits substitution: Kleimeier et al (2013)
- Increased use of cash, particularly pronounced during the peaks of the global financial crisis in 2008 and in 2013-2015: Deutche Bank (2016) and Gros (2017)

Two-stage econometric approach

1. TVP panel methodology, modelling relative deposits on:

- Relative output expectations
- Relative fiscal risk
- HICP inflation differential

2. Model estimated TVP coefficients on:

- Level of risk factors
- Dummy capturing OMT effect (July 2012)
- Dummy capturing effects of introducing EBU (November 2014)

Data

- Sample countries: Austria, Belgium, Finland, France, Netherlands (core countries), Greece, Ireland, Italy, Portugal, Spain (periphery)
- Sample period: January 1999 June 2017
- Private bank deposits index (in logs excludes deposits of central government and MFIs). Source: ECB
- Economic sentiment indicator (in logs) relative to Germany (ESI).
 Source: Eurostat)
- 10-year government bond yields relative to Germany (Source: ECB)
- HICP inflation differential v Germany. Source: ECB

TVP econometric specification

$$Y_{it} = ft + \sum_{j=1}^{d} \beta_{tj} X_{it,j} + \alpha_i + \varepsilon_{it}$$

 Y_{it} = Relative log-deposits index versus Germany

 $X'_{it,i}$ = [esi, spread, inflation, hourse prices]

TVP model estimation

- Estimated using the local linear dummy variable approach (LLDV, Sun et al, 2009 and Li et al., 2011), including "boundary effect" correction by Dai and Sperlich (2010)
- Estimation bandwidth selected using the cross-validation method (see Sun et al., 2009 and Li et al., 2011)
- 90% confidence intervals calculated using wild bootstrap on residuals of non-parametric estimated regression (1000 replications, same bandwidth and boundary effect correction used in source regression)

TVP estimates: Benchmark model, full panel

13

TVP estimates: Benchmark model, core countries

TVP estimates: Benchmark model, periphery

Adding log-house price differential against Germany (including and excluding Greece) versus benchmark model - Full panel

Adding log-house price differential against Germany versus benchmark model – Core panel

17

Adding log-house price differential against Germany (including and excluding Greece) versus benchmark model - Periphery panel

Summary of empirical findings

- Time-varying relationship between relative deposits and macro/fiscal risk factors
- Response of former to latter declines fast during GFC (especially post Lehman Brothers) and intense phase of European Sovereign Debt Crisis (2009M10-2012M07)
- Finding consistent consistent across core and periphery
- But important differentiation in behaviour of trend function
- Mixed evidence regarding effect of OMT announcement
- Introduction of EBU followed by increases responsiveness of deposits to fundamentals in core countries but not in periphery countries

Modelling TVP coefficients on fiscal/macro risk

$$\hat{\beta}_{jt} = \gamma + z_t' + \varepsilon_t$$

- $z_t = [esi_{t-1}, spread_{t-1}, inf_{t-1}, OMT, EBU]$
- esi, spread, inf defined as first principle components of national series
- esi and inf orthogonalized to address collinearity

Modelling TVP parameters obtained from the benchmark model adding log-house price differential – Full panel

		eta_t^{esi}			β_t^{spr}			eta_t^{inf}			eta_t^{hp}	
	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
	0.051*	0.050*	0 107***	0.0(0)	0.070	0 700***	0.007	0.005	0.150444	0.004***	0.004***	0.201***
constant	-0.051* (0.028)	-0.050* (0.027)	-0.107*** (0.024)	-0.268 (0.187)	-0.272 (0.149)	-0.588*** (0.147)	0.006 (0.062)	0.005 (0.051)	0.159*** (0.057)	0.234*** (0.031)	0.234*** (0.019)	0.321*** (0.013)
	(0.028)	(0.027)	(0.024)	(0.187)	(0.149)	(0.147)	(0.002)	(0.031)	(0.037)	(0.031)	(0.019)	(0.013)
spr _t	-0.016**	-0.016**	-0.021***	-0.032	-0.032	-0.081**	-0.018*	-0.010**	0.016	-0.030**	-0.030***	-0.013***
1 ·	(0.007)	(0.007)	(0.005)	(0.056)	(0.045)	(0.035)	(0.021)	(0.016)	(0.013)	(0.013)	(0.008)	(0.003)
esit		0.000	0.244**		0.351***	0.486***		0.122***	0.059**		0.079***	0.042***
		(0.015)	(0.011)		(0.086)	(0.088)		(0.354)	(0.030)		(0.013)	(0.007)
inft		-0.025**	-0.004		0.278***	0.394***		0.066**	0.010		0.055***	0.023***
1111t		(0.011)	(0.011)		(0.058)	(0.061)		(0.029)	(0.127)		(0.011)	(0.025
		(0.011)	(01011)		(0.000)	(0.001)		(0.02))	(0.127)		(0.011)	(0.000)
OMT _t			0.065			0.918***			-0.740***			-0.352***
			(0.080)			(0.345)			(0.108)			(0.049)
DDU						0.472			0.01.0444			0.040
EBUt			0.268***			0.473			0.310***			0.042
			(0.109)			(0.344)			(0.116)			(0.054)
Adj-R ²	0.055	0.098	0.378	0.001	0.331	0.444	0.012	0.285	0.523	0.148	0.624	0.875

Modelling TVP parameters obtained from the benchmark model adding log-house price differential – Core panel

		eta_t^{esi}			eta_t^{spr}			eta_t^{inf}			eta_t^{hp}	
	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
	0.010	0.010	0.001***	0.0(0)	0.0.0	0.000****	0.000	0.000	0.050	0.005***	0.004***	0.1000
constant	-0.012	-0.012	0.031**	0.863***	0.862^{***}	0.800***	-0.009	-0.009	-0.053	0.085**	0.084***	0.106^{***}
	(0.019)	(0.017)	(0.013)	(0.213)	(0.214)	(0.292)	(0.040)	(0.034)	(0.038)	(0.034)	(0.029)	(0.031)
spr _t	-0.038***	-0.039***	-0.024***	-0.379***	-0.379**	-0.385***	-0.103***	-0.103***	-0.103***	-0.009	-0.009	0.002
Shar	(0.010)	(0.008)	(0.008)	(0.104)	(0.104)	(0.097)	(0.018)	(0.013)	(0.013)	(0.009)	(0.007)	(0.008)
			· · · · ·									
esit		0.028**	0.000		0.111	0.157		0.088***	0.122***		0.046**	0.033*
		(0.014)	(0.012)		(0.071)	(0.110)		(0.024)	(0.030)		(0.018)	(0.195)
inf _t		-0.024**	-0.033***		-0.007	-0.004		0.032*	0.031*		0.064***	0.057***
IIIIt		(0.010)	(0.007)		-0.007 (0.174)	(0.178)		(0.032)	(0.016)		(0.004)	(0.012)
		(0.010)	(0.007)		(0.171)	(0.170)		(0.017)	(0.010)		(0.011)	(0.012)
OMT _t			-0.291***			0.112			-0.014			-0.245***
			(0.035)			(0.435)			(0.088)			(0.067)
EBUt			0.238***			0.219			0.328**			0.303**
			(0.044)			(0.410)			(0.131)			(0.126)
AdjR ²	0.270	0.388	0.653	0.222	0.226	0.222	0.367	0.510	0.584	0.001	0.217	0.333
j·												22

Modelling TVP parameters obtained from the benchmark model adding log-house price differential – Periphery panel

		β_t^{esi}			β_t^{spr}			eta_t^{inf}			eta_t^{hp}	
	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
constant	-0.053	-0.053	-0.115***	0.918***	0.914***	0.979***	0.049	0.048	0.276***	0.365***	0.364***	0.554***
	(0.033)	(0.030)	(0.027)	(0.324)	(0.309)	(0.368)	(0.071)	(0.059)	(0.052)	(0.048)	(0.037)	(0.022)
sprt	0.003	0.003	-0.010	-0.476***	-0.476***	-0.470***	-0.032	-0.033	0.046*	-0.052**	-0.052***	0.002
	(0.015)	(0.013)	(0.012)	(0.127)	(0.108)	(0.119)	(0.038)	(0.032)	(0.025)	(0.024)	(0.017)	(0.011)
esi _t		0.033	0.017		0.129	0.149		-0.055	-0.019		-0.009	0.027**
		(0.027)	(0.024)		(0.239)	(0.245)		(0.045)	(0.038)		(0.021)	(0.014)
		0.0.50.6.6	0.011		0.0004444	0.0454		0.4.5.0.4.4.4	0.000		0.44.6555	0.004
inf _t		-0.050** (0.019)	-0.011 (0.021)		0.388*** (0.137)	0.345* (0.202)		0.156*** (0.030)	0.022 (0.026)		0.116*** (0.023)	0.001 (0.012)
OMT _t			0.106 (0.091)			0.012 (0.564)			-1.037*** (0.129)			-0.657*** (0.065)
EBUt			0.235** (0.104)			-0.467 (0.288)			0.339** (0.152)			-0.093 (0.056)
AdjR ²	0.000	0.150	0.337	0.173	0.237	0.234	0.016	0.297	0.612	0.110	0.421	0.872
												23

Summary of empirical findings

- TVP coefficients responsive to state of macro/fiscal fundamentals, mainly spreads and esi
- Role of inflation differential weaker and mixed, although most coefficients positive
- OMT has caused no positive effect or even negative effect in core countries (substitution effect)
- Mixed OMT effect in periphery countries (substitution v income effect)
- EBU has caused positive effect in core countries
- No EBU effect in periphery countries, except from one specification (even there, EBU effect weaker for periphery countries)
- Implication: Banking crisis has had a lasting effect in agents' confidence in periphery banking systems (see Osili and Paulson 2009 and Stix 2013)
- See figures of time effects below

Time effects – model adding log house price differentials

Summary of main findings

- Paper focused on intra-EMU fragmentation in banking deposits:
- Aggregate relative deposits determined by macro/fiscal risk factors
- Relationship between macro/fiscal risk is time-varying
- Time variation driven by level of macro/fiscal risk
- Findings apply to full, core, and periphery panels
- Periphery-specific problem of reduced trust in local banking systems
- Deficit of trust unmitigated by OMT and EBU in its current form

Implications for EDIS – I

- EDIS supported as necessary for reducing fragmentation and increasing resilience of European banking systems
- Empirical findings supportive of this argument
- Fragmentation: Improvement of fiscal/macro risk not enough to restore quickly enough trust in periphery banking systems
- Argument supported by survey results (Crabtree, 2013) confirming significant lack of trust in periphery banks
- Resilience: Heavy fiscal legacy of crisis years implies that reduction in deposits can happen very fast in all countries, core and periphery

Implications for EDIS – II

- Further reduction in macro/fiscal risk through fiscal/structural reforms
- Enhancement of the pre-emptive and corrective arms of the EMU banking supervision/regulation framework through single supervision and resolution mechanisms
- Completion of the EBU through the introduction of EDIS
- Can result in a superior, incentives-compatible mix of risk-sharing and risk-reduction, towards reducing fragmentation and increasing resilience