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Abstract

Information technology, infrastructure enhancement, and arbitrage strategies all contribute

to link trading venues in fragmented markets. Our paper highlights a new cross-market linking

channel: the interdependence of liquidity providers’ inventory costs. We use a two-venue duopoly

model involving strategic risk-averse market-makers. Costs to provide immediacy depend on

market-makers’ inventory aggregated across venues, implying that absorbing a shock in one

venue simultaneously changes marginal costs in all other venues. Moreover, market-makers

strategically choose which shock(s) to absorb. These two forces may lead to competitive prices

and enhanced liquidity. Using Euronext proprietary data, we uncover evidence for these cross-

market inventory cost linkages.

Keywords: Market fragmentation, strategic price competition, cross-market cost linkage

JEL Classification code: D43, G10, G20



1 Introduction

During the past decade major changes in regulation were enacted in the U.S. and in Europe

with the intent to promote competition among trading venues. As a result, today’s financial

markets are more fragmented and more complex than ever. Market fragmentation has multiplied

the possibilities of trading the same asset simultaneously across (very) different trading venues,

increasing the risk of price discrepancies. New intermediaries have emerged in the form of high-

frequency traders, which invest in high speed computerized trading systems to provide liquidity

on a given venue and across venues (Menkveld, 2013). As the extent of market fragmentation

steadily and quickly increased, cross-market linking strategies have also developed at the same

pace.1 The literature has pointed out arbitrage strategies, duplicate strategies, or directional

trading strategies as mechanisms that explain connectedness across venues.2

The present paper explores a new and additional channel by which venues are interconnected:

the cross-market inventory cost linkage. In our setting, market-making intermediaries trade in

multiple venues and exhibit asymmetric costs to supply liquidity due to different positions in

the risky asset held in inventory. If a market-maker’s costs to provide immediacy are such that a

shock absorbed in one venue simultaneously changes her marginal costs in all other venues, then

this market-maker updates her quotes across all venues accordingly. We develop this intuition

in a two-venue duopoly model in which market-makers’ cost to supply liquidity in one venue is

linked to all other venues through their inventory position aggregated over all trades. We show

that fragmentation may lead to more competition and more liquidity. We test this new result

using a proprietary dataset from Euronext on multi-traded stocks, in which we can uniquely

identify financial institutions. The granularity of our data allows us to construct the trade-

by-trade position of each trader in each venue, and, in particular, the aggregate position of

traders engaged in multi-venue market-making. We can thus relate directly aggregate inventory

1For instance, Virtu Financial, one of the largest computerized trading firms, trades U.S. securities in a broad
set of trading platforms which include NYSE, ARCA, NASDAQ, BATS-Z, BATS-Y, EDGA, or LIGHTPOOL.

2See, for instance, the ESMA (2016) report on multi-venue trading strategies.
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positions and liquidity and test our main prediction.

Our modeling framework considers two risk-averse market-makers who differ by their inven-

tory position, or, equivalently, by their costs to provide immediacy. The market-maker with

the more extreme inventory position can produce immediacy at a smaller cost. Market-makers

compete to post prices for the same asset traded on two transparent venues.3 We assume that

the venue termed as the dominant market receives a larger shock than the alternative venue

termed as the satellite market. This two-venues environment particularly fits Australian, Cana-

dian or European equity markets in which each incumbent exchange has still a strong presence

in its domestic market, facing mainly a strong competitor (Chi-X Australia, Chi-X Canada and

CBOE Europe Equities).4

The two venues may be exogenously hit by liquidity shocks, which might be of the same

sign or of opposite signs. Investigating a two-sided model enables us to pin down the entire

mechanics of the cross-market cost linkage, and the strategic behavior of market-makers in

each case. Intuitively, when shocks have the same sign, the cross-market cost linkage exerts an

anticompetitive force on prices. A market-maker which strategically chooses to absorb a shock in

a venue anticipates that her cost to simultaneously provide same-side immediacy increases in the

other venue. This effect reverses when shocks have opposite signs: absorbing a buy shock in one

venue decreases cost to absorb a sell shock hitting another venue, leading to more competitive

prices.

A multi-venue environment generates another force: the possibility to choose the shock to

absorb, and thus the venue on which to compete. This force affects both market-makers in our

model, but in distinct ways. The market-maker with the smaller costs to supply liquidity can

choose to absorb both demand shocks, if her costs are small enough; otherwise, she will choose to

absorb the shock with the most favorable impact on her inventory exposure. The second market-

3Our paper only focuses on fragmentation of lit (or transparent) trading venues. See, for instance, Buti et al.
(2017) for an analysis of market fragmentation involving opaque trading venues (like dark pools).

4Chi-X Europe has been acquired by BATS Europe in 2011, which in turn has been acquired by the CBOE in
2017.
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maker, who holds a less extreme inventory position, is not able to undercut simultaneously in

both venues and will never trade in both. He keeps however the freedom to compete in any of

the two venues, thereby endogenously affecting the optimal pricing of the first market-maker.

We show that these two forces, the cross-market cost linkage and the choice to trade in only

one of the venues, interact to generate two alternative situations. The first situation consists of a

“low-competition” case in which the costs of the more extreme market-maker, even if smaller, are

too high to enable her to simultaneously absorb two shocks. She chooses to supply liquidity in

the dominant venue while letting her opponent with higher cost absorb the smaller shock of the

satellite venue. Each market-maker specializes in one venue and behaves as a local monopolist

by pricing high. Even if the cross-market cost linkage may exert a competitive force on prices

(occurring when shocks have opposite signs), it is offset by the anticompetitive role played by

the possibility for market-makers to compete in only one venue.

The second situation corresponds to an “intense-competition” case in which the inventory

costs of the more extreme market-maker are so small that she can absorb all shocks. The intensity

of price competition varies however whether liquidity shocks have the same sign or opposite

signs. In the latter case, the market-maker uses the competitive role played by the cross-market

linkage to post attractive prices in the two venues. In the opposite case, the market-maker must

overcome the anticompetitive pressure of the cross-market linkage to undercut her competitor.

Additionally, the latter can post aggressive quotes in any of the two venues, which exerts a

competitive pressure. These two effects lead to an “ultra-competitive” case, in which the more

extreme market-maker prices low in each venue in order to undercut and avoid being undercut.

This situation corresponds to the case in which the inventory position among market-makers is

highly divergent, and same-sign shocks, if absorbed, enable the more extreme market-maker to

reduce her large inventory risk exposure.

Strategic price competition impacts liquidity. We show that the liquidity in each venue

varies with the cross-market cost linkage: local liquidity may deteriorate or improve depending
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on the sign and magnitude of the cross-market cost linkage. By analysing the total liquidity

available on the two venues, we find that a fragmented market may be more liquid than a

centralized batch market. The improvement in global liquidity is mainly explained by the ultra-

competitive case uncovered by our model. Finally the mechanics of the cross-market cross

linkage makes liquidity across venues interconnected even if liquidity demands are exogenously

specified. This liquidity interconnectedness is stronger when the probability of having same-

sign shocks increases, or when volatility or market-makers’ risk aversion increases, which might

occur in periods of market distress. Our paper therefore proposes thus a new and additional

explanation related to commonality in liquidity.

To test the model, we adopt a two-step empirical approach. In the first step, we investigate

whether intermediaries’ costs to supply liquidity are interrelated across venues. In the second

step, we test the main prediction of our model, i.e., that bid-ask spreads within one venue vary

with the sign of the shock in the other venue (identical or opposite) and with the divergence

in market-makers’ aggregate inventory positions. The more divergent market-makers’ aggregate

inventories are, the more likely a more extreme market-maker is willing to post ultra-competitive

quotes.

Our analysis uses a proprietary dataset on multi-venue traded stocks from Euronext on a

four-month period in 2007. This environment provides an excellent laboratory to test our main

prediction for three reasons. First, within Euronext created in 2000, trading rules in all markets

(Amsterdam, Brussels, Paris and Lisbon) are harmonized and structured on the Paris Bourse

limit order book model. During our time period, limit order books are identical but separate.

Second, during that period (that is, before the implementation of MiFID in November 2007),

Euronext collected the overwhelming majority of the trades (up to 98 %).5 Our reconstitution

of intermediaries’ net positions across venues is therefore a very good proxy for their aggregate

inventory position. Third, the proliferation of trading venues post-MiFID is associated with

5The European MiFID legislation (Markets in Financial Instruments Directive) has put an end to the monopoly
of regulated markets with the introduction of multilateral trading facilities.
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platforms with different trading fees, clearing and settlement systems, tick sizes, speed (or

latency), or degree of transparency (like dark pools) which all affect bid-ask spreads and market

quality.6 In other words, the effects of fragmentation might be confounded by these different

forces. Our study does not suffer from this issue and clearly focuses on the unique impact of

market fragmentation on price competition and liquidity.

A strength of our dataset is to contain the unique identifier of each participant (identical

across all venues), enabling us to track members’ activity (trades and messages) from one venue

to another. Figure 1 illustrates our data. The top graph shows the multi-venue quoting activity

of a Euronext market-maker trading the French gas utility Suez both on Euronext Paris and

Euronext Brussels on January 19, 2007. The bottom graph shows the aggregate inventory

position. Interestingly this inventory tends to mean-revert over the day, corroborating that

multi-venue market-makers manage inventory across all venues. Her quoting competitiveness

also varies across hours and across venues (quotes of the satellite venue are more distant from

the midpoint of the virtual consolidated book).

[INSERT FIGURE 1]

In accordance with Figure 1, our empirical analysis finds evidence of cross-venue inventory

effects. Using a logit model, we find that multi-venue market participants, in particular formally

registered market-makers, are more likely to submit messages aiming at mean-reverting inventory

in a venue when their preexisting orders have been passively hit in the other venue. This result

validates our hypothesis that aggregate inventory is a driver of multi-venue market-making

strategies. It also makes this paper one of the first to uncover evidence on cross-venue inventory

effects. More importantly, our empirical analysis shows that bid-ask spreads decrease when our

measure of divergence in inventories is high and when liquidity shocks across venues have the

same sign, i.e. when competition is heating up. This result is uniquely predicted by our model

and it is the opposite of what an adverse-selection-based model would predict.

6See Gomber et al. (2017) for a survey on the impact of market fragmentation.
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The negative impact of fragmentation may be overcome by linking venues, as suggested

by Foucault et al. (2013). O’Hara and Ye (2011) hypothesize that a consolidated tape and a

trade-through protection are necessary conditions to create a virtual consolidated market. The

use of Smart Order Routing Technologies (SORT) by market participants has contributed to

link the venues together and to consolidate the market. Foucault and Menkveld (2008) show

that, provided that they have access to a SORT, limit order traders increase competition among

venues by bypassing time priority of the dominant venue. This “queue-jumping” strategy results

in higher depth and lower spreads in a virtual consolidated book. van Kervel (2015) extends the

set-up of Foucault and Menkveld (2008) to informed fast traders, and shows however that an

increase in the proportion of fast investors using SORT leads to an increase in adverse selection

costs for market-makers leading to lower liquidity. While these papers assume that quotes are

set by competitive market makers, we develop a model of strategic market-making and show that

the best response of market-makers to non constant marginal costs to supply liquidity across

venues may lead to more competition and lower spreads. Our model is consistent with empirical

results uncovering positive effects of liquidity of market fragmentation (see, for example, Degryse

et al. (2015) or Aitken et al. (2017)), while offering a new and alternative mechanism linking

venues.

The paper is organized as follows. Section 2 describes the model and investigates price

formation in a two-venue market-making environment. Section 3 describes the data, provides

summary statistics and tests the main implications of the model. Section 4 concludes the paper.

All proofs are available in the Appendix.
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2 The Model

2.1 The basic setting

We consider the market for a risky asset with a random final cash-flow ṽ which is normally

distributed with expected value µ and variance σ2. There are two types of market participants:

investors who demand liquidity and market-makers who supply liquidity.

Time line of the trading process. The trading game consists of four stages. At stage 1,

market-makers are endowed with an inventory position. At stage 2, a venue can be hit by an

exogenous liquidity shock generating a liquidity demand Q. At stage 3 market-makers compete

to execute the demand. At stage 4, the final cash-flow of the risky asset is realized.

Stage 1 - Reservation prices and costs to supply liquidity. Liquidity is supplied by two

equally risk-averse intermediaries with coefficient ρ.7 At stage 1, each market-maker i receives

a non-zero inventory position in the risky asset Ii, where Ii is the realization of the random

variable Ĩi uniformly distributed on [Id, Iu] (i = 1, 2).8 We denote ri the minimum (resp.

maximum) selling (resp. buying) price at which market-makers can execute buy orders (resp.

sell orders) without incurring losses. The reservation price ri is defined by equating expected

utility functions EU(Q, ri) = EU(0, ri), where U(Q, ri) is the (CARA) utility of market-maker

i absorbing the demand shock Q at price ri, i.e.,

r(Q; Ii) ≡ ri (Q) = µ− ρσ2Ii +
ρσ2

2
Q. (1)

Because of the non-zero inventory, market-makers are willing to trade to reduce inventory risk.

Equation (1) shows an inverse relationship between a market-maker’s inventory position and

her/his reservation prices. Longer market-makers with lower reservation prices are actually

induced to post lower bid and ask prices to attract buy orders and reduce their inventory

7In the remaining part of the paper, we use market-maker, intermediary or liquidity provider interchangeably.
8All random variables are independent and their distributions are common knowledge.
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exposure. However, the last term shows that, the larger the shock Q to absorb, the higher the

quote a market-maker would post, making him less likely to attract buy orders.

Reservation prices may be interpreted as costs to supply liquidity for market-makers, which

allows us to define (total) inventory costs for market-maker i as follows:

TCi(Q) = ri (Q)×Q, (i = 1, 2). (2)

Note that inventory costs are quadratic.9 Large transactions are more risky and thus more

costly as they may lead to more unbalanced inventory positions for market-makers.

For ease of exposition, in what follows we consider that market-maker 1 is endowed with a

longer inventory position, i.e., I1 > I2. This assumption entails that costs to absorb the shock

Q are smaller for market-maker 1: TC1(Q) < TC2(Q).

Stage 2 - Market fragmentation. We suppose that the risky security trades in two trading

venues, denoted D and S, that we assume to be transparent. At stage 2, a venue m can be

exogenously hit by a liquidity shock with probability ζm (m = D, or S).10 We assume that

the liquidity demand sent to venue D, denoted QD, is larger in magnitude than that routed to

venue S, i.e., |QD| > |QS | and we assume that probabilities of shocks are such that ζD > ζS .

We thus term venue D as the dominant market, and venue S as the satellite market. Note that,

by convention, a positive (resp. negative) shock generates a buy (resp. sell) liquidity demand

denoted Qm > 0 (resp. Qm < 0), m = D, or S. We denote by ζ the probability that both

venues are simultaneously hit by shocks (ζ = ζD × ζS), and by γ the probability that shocks

have the same sign across venues.

For the sake of exposition we assume that shocks generate a net-buying order flow, i.e.,

9This assumption is common in the theoretical literature modelling risk-averse market-makers: see, for instance,
Ho and Stoll (1983), Biais et al. (1998), or Gârleanu and Pedersen (2013).

10The baseline model assumes that the order flow exogenously fragments across venues D and S. In the Online
Appendix (Appendix C), we address the case of an endogenous fragmentation by assuming that a global liquidity
demander has simultaneously access to all venues and minimizes his trading costs by optimally splitting orders
across venues. Appendix C shows that, even in this case, the liquidity demander does not direct all orders to a
unique venue, but optimally chooses to split orders, leading to a fragmented market.
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QD +QS > 0, or, equivalently, QD > 0 while QS might be a buying or selling liquidity demand.

Symmetric results are easily obtained for a net-selling order flow. Note that, since the global

order flow is net-buying (QD +QS > 0), market-maker 1 benefits from a competitive advantage

(given that we assume I1 > I2, or, equivalently TC1(QD +QS) < TC2(QD +QS)).

Stage 3 - Quoting strategies of multi-venue intermediaries. We assume that intermedi-

aries behave strategically and that they have access to all trading venues at the same time. At

stage 3, conditional on observing QD and QS , multi-venue market-makers post simultaneously

their quotes in venues D and S. The market-maker who posts the lowest ask price (resp. highest

bid price) in venue m executes Qm > 0 (resp. Qm < 0), for m = D,S.

A multi-venue quoting strategy for market-maker i is a pair of quoted prices (pDi , p
S
i ) where

pDi is the price posted by market-maker i in venue D and pSi is the price posted by i in venue S

(which is an ask price if Qm > 0 or a bid price if Qm < 0). Market-makers’ trading profits are

detailed in Appendix A.1.

In our model, we will need to consider under what conditions a market-maker who competes

in one venue will decide to compete in an additional venue. Denote by Q−m the liquidity shock

in the additional venue, given that the market-maker is ready to absorb the shock Qm in his

“home” venue. We introduce a specific reservation price r̂i, termed as the “stay-at-home” price,

at which market-maker i is indifferent to execute the liquidity demand Q−m in addition to the

demand Qm. Specifically let r̂i(Q−m) be defined by equating EU(Q−m+Qm, r̂i) = EU(Qm, r̂i).

It follows that:

r̂i(Q−m) = µ− ρσ2Ii +
ρσ2

2
Q−m + ρσ2Qm = ri(Q−m) + ρσ2Qm. (3)

We observe that the “stay-at-home” price may be rewritten as r̂i(Q−m) = r(Q−m; Ii −Qm). In

other words, market-maker i behaves as if she is sure to execute (inelastic) orders in venue m

(consistent with a monopolistic situation) and, anticipating the impact of Qm on her inventory

9



(Ii−Qm), her true value for accepting to enter in the other venue −m is now this new reservation

price, r̂i(Q−m). For example, if Qm > 0, any selling price below r̂i is not sufficiently high for the

market-maker to try to capture the orders Q−m. She prefers not to compete in the additional

venue. Notice that r̂i(Q−m) > ri(Qm + Q−m) if Qm > 0 and r̂i(Q−m) ≤ ri(Qm + Q−m) if

Qm ≤ 0.

Stage 4 - End of the trading game. Because the final cash-flow of the risky asset is realized,

no uncertainty remains. The extensive form of the trading game is represented in Figure 2.

Before we leave this section, two important remarks are in order. First, in our set-up market-

makers must manage their inventory by keeping track of shocks across all trading venues. Be-

cause making the market “globally” (i.e., across various venues) affects an intermediary’s total

exposure to inventory risk, only aggregate inventory matters as opposed to ordinary inventory

that guides an intermediary taking risks just in one venue.11 Second, because we assume that

venues D and S are transparent, intermediaries’ quotes are observable by market participants.12

In other words, we suppose that intermediaries observe each other’s inventory position, or,

equivalently, each other’s private costs to provide liquidity.

2.2 Equilibrium quotes in a fragmented market

This section analyzes the Nash equilibria of the quoting game.

Let us first consider a centralized market in which liquidity demands are batched and sent

to a unique venue, as in Ho and Stoll (1983). In this case the market-maker with a longer

inventory position (market-maker 1 by assumption) posts a more competitive ask price, by

slightly undercutting the reservation price of her shorter opponent:

(ac1)
∗ = r2(QD +QS)− ε, (4)

11Our definition of aggregate inventory is close to the definition of equivalent or total inventory emphasized by
Ho and Stoll (1983) and discussed in Naik and Yadav (2003). However, while equivalent inventory is the overall
position of an intermediary across all stocks, aggregate inventory is the cumulated net inventory position of an
intermediary in a single stock but across all available trading venues.

12The game is a complete information game.
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where ε corresponds to one tick. The longer intermediary behaves strategically by shading her

ask price upward, i.e. she chooses to post an ask price above her reservation price (r1(QD+QS))

to increase her payoff, but still below the true value of her opponent to be sure to execute the

order flow. This section analyzes how market fragmentation significantly alters this market-

making strategy, and market-maker 1’s market power.

2.2.1 Preliminary results

When markets are fragmented, market-makers meet and strategically compete in many different

venues, and not in a single one. One consequence of this multi-market structure is that they

might strategically choose to withdraw from some venues to compete more intensely on other

venues. In a two-venue setting, Lemma 1 below shows that, at equilibrium (if it exists) two

different situations might emerge: either a single market-maker virtually consolidates the market

by executing all orders across venues, or each market-maker specializes in one venue, by trading

only the orders from that venue.

Lemma 1 Assume that I1 > I2 and that QD +QS > 0.

1. If market-makers’ inventory costs are such that TC1(QD + QS) < TC1(QD) + TC2(QS)

or, equivalently, (I1 − I2 − QD)QS > 0, and if an equilibrium exists, then a market-maker

consolidates the order flow through a multi-venue execution. Conversely, if TC1(QD + QS) ≥

TC1(QD) + TC2(QS) or, equivalently, (I1 − I2 −QD)QS ≤ 0, and if an equilibrium exists, then

it is such that orders submitted to the different venues are executed by different intermediaries.

2. If there exists an equilibrium such that a market-maker consolidates the orders, then the

longer market-maker executes the global order flow. If there exists an equilibrium such that each

market-maker specializes in one venue, then the longer market-maker executes the buy demand

sent to the dominant venue, while the shorter intermediary executes orders sent to the satellite

venue.

11



In a centralized market, recall that orders are batched and crossed (if QS < 0) and the

outcome depends only on the divergence between market-makers’ inventory positions (I1 − I2)

because the latter determines who has the lowest cost to supply liquidity. In a two-venue setting,

the problem is more complex. First, in order to decide which shock(s) to absorb, market-makers

have to consider the different costs to supply liquidity in each venue, TCi(Qm), and also across

venues, TCi(Qm +Q−m), as shown in Lemma 1.

Second, Lemma 1 indicates that there exist cases in which market-maker 1 behaves as if

capacity-constrained. Even if market-maker 1 has the smallest cost to produce liquidity, this

cost may however be too high to profitably absorb all shocks, as indicated by the inequality

TC1(QD +QS) ≥ TC1(QD) + TC2(QS).13 In that case market-maker 1 executes only orders in

the venue with the most favorable impact on her inventory risk, that is, venue D. For instance,

consider the case in which the divergence in inventories is high, i.e., I1 − I2 − QD ≥ 0, and

the shock hitting S is negative (QS < 0). Since market-maker 1’s position is very large and

very risky, she is willing to execute all incoming buy orders to lay off her inventory. Hence she

trades only QD. Absorbing sell orders in S would indeed aggravate her inventory exposure. In

a two-venue setting, there exists a possibility to compete in only one venue, which, in turn,

influences market-makers’ pricing strategies.

Third, recall that market-makers’ inventory position is aggregated across venues. This global

inventory position makes market-makers’ costs to supply liquidity interdependent across venues.

The marginal cost to supply liquidity in venue m depends also on the output in venue −m:

∂TCi(Qm+Q−m)
∂Qm

= ∂TCi(Qm)
∂Qm

+ ρσ2Q−m. The second term, ρσ2Q−m, is a new cross-market effect,

absent from any competition in a single centralized venue, which influences the strategic pricing

decision of market-makers. If market-maker i chooses to absorb a buy (resp. sell) demand in

venue −m, her cost to provide liquidity in m increases (resp. decreases), resulting in higher

(resp. lower) selling prices in m. This pattern is perfectly anticipated by her opponent in

13In our model, inventory position plays a role of a “soft” capacity constraint, because market-makers can
always absorb larger trades beyond their optimal inventory position, albeit at an increasing marginal cost. The
softness of capacity constraints has been introduced by Cabon-Dhersin and Drouhin (2017).
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our model. The cross-market cost linkage, created by the existence of a second venue, may

thus affect competition either way - by softening it (when shocks hitting venues have the same

sign) or intensifying it (when shocks have opposite signs). Notice that the anticompetitive

vs. competitive effect of the cross-market cost linkage on price competition is caused by both

non-constant marginal costs to supply liquidity and the strategic behavior of market-makers.

In summary, a two-market structure involves new strategic interactions across venues, namely

through the structure of interdependent inventory costs and the possibility to choose the shock

to absorb. These interactions fundamentally change the outcome of price competition, as shown

in Proposition 1 below.

2.2.2 Optimal quotes

We now analyse the pricing strategies of market-makers.

Proposition 1 Assume that I1 > I2 and QD +QS > 0.

1. If (I1 − I2 −QD)QS > 0, there exists a Nash equilibrium, in which market-maker 1, with the

longer position, consolidates the market by posting the best prices in all venues. At equilibrium,


(
(aD1 )∗, (aS1 )∗

)
= (r2(QD)− ε, r2(QS)− ε) if QS > 0,

(
(
aD1
)∗
,
(
bS1
)∗

) = (r̂2(QD)− ε, r2 (QS) + ε) if QS < 0.

2. If (I1 − I2 −QD)QS ≤ 0, there exists a unique Nash equilibrium, in which market-maker 1,

holding the larger inventory, posts the best selling price in the dominant market while market-

maker 2 posts the best price in the satellite market, that is:


(
(aD1 )∗, (aS2 )∗

)
=
(
r̂2(QD)− ρσ2QS × η − ε, r̂1(QS)− ε

)
if QS > 0,

((aD1 ))∗,
(
bS2
)∗

) = (r̂2(QD)− ε, r̂1(QS) + ε) if QS < 0.

where ε corresponds to the minimum tick size and η is equal to (I1−I2)
QD

∈]0, 1].
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Recall that there are two driving forces specific to our two-market duopoly: (i) the possibility

to choose the venue on which to compete; and (ii) a cross-market cost linkage due to the

global management of the position across venues. The net effect of these forces creates two

opposite situations in our model: (i) an “intense-competition” case in which costs to supply

liquidity are small enough to allow market-maker 1 to price low in the two venues in order

to undercut and to avoid being undercut (TC1(QD + QS) < TC1(QD) + TC2(QS)), and (ii)

a “low competition” case in which market-maker 1 cannot absorb shocks in the two venues

and prices high to maximize profit in one venue while market-maker 2 chooses the other venue

(TC1(QD +QS) ≥ TC1(QD) + TC2(QS)).14

First, let us consider the “intense-competition” case, in which market-maker 1’ inventory

costs are small enough to provide liquidity in the two venues (that is, (I1 − I2 −QD)×QS > 0

holds).

• If QS > 0 and market-maker 1 is very long (I1 − I2 − QD > 0), market-maker 1 has

incentives to undercut market-maker 2 in both venues. Her opponent however might

choose to compete in a single venue, which might be either D or S. Market-maker 1 is

thus obliged to quote below the minimum selling price of market-maker 2, r2(Qm), in each

venue m. The threat created by the possibility of the opponent to compete in only one

venue forces market-maker 1 to quote “ultra-competitive” prices. This pressure offsets the

anticompetitive role of the cross-market cost linkage.

• Suppose that QS < 0 and market maker 1 is less long (I1− I2−QD < 0). If market-maker

1 executes buy orders sent to D, she will be shorter than market-maker 2. She is thus able

to undercut market-maker 2’s highest possible buying price, r2(QS) in venue S. Further

the cross-market cost linkage plays a competitive role. In particular, it allows market

maker 1 to decrease even more her selling price to r̂2(QD) < r2(QD) in venue D.

14In a single centralized venue, one can also show that a market-maker with more severe capacity constraints
posts less competitive prices, and enjoys a higher market power, while market-makers with large capacity behave
more competitively.
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Note that the competitive effort exerted by market-maker 1 is more intense when QS > 0. Due

to the inventory cost convexity, supplying liquidity for same-sign shocks is much more costly

than for opposite-sign shocks (ceteris paribus), which is mirrored by the positive or negative

impact of the cross-market cost linkage. That is the reason why we qualify quotes posted by the

longer market-maker as ultra-competitive.

Second, let us consider the “low competition” case in which market-maker 1’s inventory costs

are too high to supply liquidity in the two venues, which is equivalent to the following inequality

(I1 − I2 −QD)×QS ≤ 0.

• Suppose that QS > 0 and that market-maker 1 is less long, I1 − I2 −QD ≤ 0. If she is in

position to undercut market-maker 2 in the dominant venue D, she is not long enough to

undercut in venue S (I1−QD ≤ I2). She thus chooses to quote her “stay-at-home” price in

S, which is anticipated by marker-maker 2. To be sure to undercut and not being undercut

in the dominant venue, market-maker 1 must however quote a price more aggressive than

the “stay-at-home” price of market-maker 2, resulting in posting the price (aD1 )∗ ≤ r̂2(QD).

Both the cross-market cost linkage and the possibility to absorb only orders sent to one’s

“home” venue play an anti-competitive role, resulting in less competitive prices.

• Suppose now that QS < 0 and that market-maker 1 is very long (I1− I1 ≥ QD), exposing

her to large inventory risks. Reducing her inventory imbalance is the primary consideration

for the market-maker choice of trading venue. She does choose to compete in venue D

and not in venue S. Note that even if she undercuts market-maker 2 in venue D, she is

still longer than him (I1 − QD ≥ I2) and has no chance to execute sell orders in venue

S. Symmetrically the shorter market-maker 2 chooses to compete in venue S, and not in

venue D. This creates a situation in which each market-maker acts as a monopolist in

its preferred or “home” venue and quotes in the other venue her/his “stay-at-home” price

r̂i(Q−m). Even if the cross-market cost linkage exerts a competitive force on prices, it is

more than offset by the anti-competitive role of the ability to choose the shock to absorb.

15



2.2.3 Transaction costs

Based on Proposition 1 this section investigates transaction costs by comparing the level of best

bid and ask prices set in a fragmented market to those in a centralized market. Liquidity traders

face lower total trading costs (denoted TTrC) in a fragmented market if and only if:

TTrC − TTrCc = (aD1 )∗QD + (pSi )∗QS − (ac1)
∗(QD +QS) ≤ 0 (5)

To make the analysis easier, we use a numerical example. Figure 3 shows the best prices as

a function of the divergence in inventories (I1 − I2). Panel A illustrates the case in which

two positive shocks simultaneously hit venue D and venue S. Panel B illustrates the case of

shocks of opposite signs. In both cases, the vertical line QD separates the region in which the

divergence in intermediaries’ inventories is high (the right-hand side of the graph, corresponding

to I1 − I2 > QD) from the region in which divergence is low (the left-hand side, corresponding

to I1 − I2 ≤ QD).

[INSERT FIGURE 3]

The case of simultaneous positive shocks. In this case, the cross-market cost linkage has an

anticompetitive impact on the best prices in both venues D and S. However, the possibility to

compete in only one venue sometimes offsets this negative force: In the region to the right of the

vertical line QD, market-maker 1 is very long and posts ultra-competitive prices in each venue

to be sure to undercut market-maker 2. In this case, market fragmentation increases intra-venue

competition leading to lower transaction costs relative to the centralized case: TTrC−TTrCc =

(aD1 )∗QD + (aS1 )∗QS − (ac1)
∗(QD +QS) = −ρσ2QDQS < 0.

In the region to the left of the vertical line QD, it is more profitable for market-maker 1

to supply liquidity in only one venue. She chooses to absorb the shock hitting the dominant

market, while letting her opponent absorb the less desirable shock in the satellite venue. The

market is split among the two market-makers.
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Interestingly, the equilibrium selling price in the satellite venue might be higher than the

one of the dominant venue despite a smaller quantity to execute (thus a smaller price impact).

The intuition for this result is as follows. When marker-makers’ position tend to be equal

(I1 − I2 → 0), the longer market-maker still executes the larger demand, while the shorter

market-maker executes the smaller demand. A higher equilibrium price in the satellite market

must however compensate the smaller quantity executed by market-maker 2 to prevent him from

deviating and executing the larger quantity. Therefore there must exist an intersection point p

at which selling prices are equal across venues, as illustrated by Figure 3 Panel A.

Market fragmentation has thus an ambiguous effect on price competition and transaction

costs in this case. To the right of p, price competition is still stronger than in the centralized

case and market fragmentation is beneficial for transaction costs (TTrC − TTrCc = −2ρσ2 ×

QS(I1 − I2 − QD
2 ) ≤ 0). To the left of p, competition is weaker, and transaction costs are larger

than those paid in a centralized market: TTrC − TTrCc > 0.15

The case of opposite shocks. Subfigure (a) of Panel B depicts the best selling price in the

dominant venue. Subfigure (b) draws the best buying price in the satellite venue (which is hit

by a sell shock). In this case, remind that the cross-market cost linkage exert a competitive

force on quoted prices. In particular, the equilibrium selling price in the dominant venue (aD)∗

is always more competitive than the ask price of a centralized market, which is mainly driven

by the competitive effect of the cross-market cost linkage.

When market-maker 1 is very long (region to the right of the vertical line QD), she chooses

not to compete for sell orders sent to the satellite venue, that would increase inventory risk. This

is anticipated by market-maker 2 who therefore posts a price which is less and less aggressive

than market-maker 1 is longer. Both market-makers behave as local monopolists. Transaction

costs thus worsen: TTrC − TTrCc = ρσ2(I1 − I2 −QD)(−QS) ≥ 0.

15We can easily deduce that p is such that prices in a fragmented and a centralized market are equal, or such
that transaction costs are equal across market structures, i.e., p is such that I1 − I2 −QD/2 = 0.
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In the region to the left of the vertical line QD, market-maker 1 consolidates the fragmented

order flow QD + QS . She undercuts her opponent in venue D, which simultaneously makes

her shorter than market-maker 2 and able to also undercut him in the satellite venue. While

orders cannot be crossed directly in a two-venue setting, prices posted in each venue by market-

maker 1 are however as competitive as in a centralized market crossing orders. Fragmentation

is innocuous since TrC − TrCc = 0.

[INSERT FIGURE 4]

Figure 4 summarizes the impact of multi-venue strategic market-making on ex post trans-

action costs (for any values of our parameters), compared to strategic market-making in a

centralized market. The region above the x-axis represents the case in which shocks have the

same sign, while the region below is related to the case in which shocks have opposite signs. A

global overview of the picture shows that market fragmentation is beneficial when shocks have

the same sign (the green regions B and C), as it strengthens market-makers’ competition. It is

globally the opposite situation when shocks have opposite signs, since transaction costs are, at

best, similar to those paid in a centralized market (the neutral white region D), or higher (the

red region A2). In that case a centralized market is better since it crosses trades and only the net

order imbalance (QD + QS < QD) is absorbed by the longer market-maker. The consolidation

advantage is however replicated in a two-venue setting when the best response to market-maker

1 given her small inventory risk exposure is to virtually consolidate the net order flow (region

D of low inventory divergence).

2.3 Assessing ex ante execution quality

This section analyzes how multi-venue market-making strategies affects liquidity. Using the ter-

minology developed in Degryse et al. (2015), we investigate local liquidity by computing expected

bid-ask spreads set in each venue, and global liquidity by aggregating expected transaction costs

over the two venues.
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2.3.1 Local liquidity

Using Proposition 1 and the extensive form of the trading game (Figure 2), we compute the

expected (half-) spreads in the dominant and the satellite venues for any set of inventory positions

and any sign for liquidity shocks QD and QS . For ease of exposition, we denote by φm the

magnitude of the shock hitting venue m scaled by the distribution support (Iu− Id) and signed

according to the sign of the shock: φm = Qm
Iu−Id for a positive shock and −φm = Qm

Iu−Id for a

negative shock. Proposition 2 follows.

Proposition 2 The expected (half-) spreads in the dominant and the satellite venues respectively

write:

E
(
sD
)

= ρσ2(Iu − Id)
[

1

2
(φD −

2Id + Iu
3

) + ζSφS

[
γ(φD −

(φD)2

3
)− (1− γ)

]]
, (6)

E
(
sS
)

= ρσ2(Iu − Id)
[

1

2
(φS −

2Id + Iu
3

) + ζDφD

[
φD −

(φD)2

3
− (1− γ)

]]
, (7)

where ζm is the probability that a liquidity shock hits venue m and γ is the probability that shocks

hitting D and to S have the same sign (m = D,S).

Local spreads are made of two components. The first component is the direct price impact of

orders routed to that venue. It corresponds to the expected best offer that would prevail if there

is no shock hitting the other venue (φ−m is zero with probability 1−ζ−m). The second component

consists of the indirect price impact of trading in the other venue (φ−m) resulting from the effect

of the cross-market cost linkage, while its magnitude relates to market-makers’ market power.

This component may be positive or negative depending on the value of the parameters γ and

φD. In particular, local expected spreads adversely enlarge when γ, the probability that shocks

have the same signs across venues, increases. Local liquidity deteriorates mainly due to the

anticompetitive role of the cross-market cost linkage. When γ is sufficiently low, the opposite

occurs due to the changing sign of the cross-market cost linkage.
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Note that the existence of a second market is asymmetric: the dominant market has a

stronger influence on local spreads set in the satellite market, than the opposite.16 It is due

to two main effects: (i) the magnitude of the indirect shock, bigger from the dominant venue

(stronger effect of the cross-market cost linkage); (ii) the intensity of the competition which is

lower in the satellite market (see Panel A of Figure 3 to the left of p and Panel B (b) to the

right of QD).

2.3.2 Global liquidity

From Proposition 2, we compute total expected trading costs in a fragmented market. The next

corollary compares them to expected trading costs that would prevail in a centralized market.

Corollary 1 Total expected trading costs are lower in a fragmented market rather than in a

centralized market if and only if the probability to observe shocks with the same sign is such that

γ > 1
3 and the standardized quantity φD is neither too large, nor too small (Φ1

γ < φD < Φ2
γ).

The intuition of the corollary is as follows. Figure 4 shows that ex post transaction costs are

strictly lower in a fragmented market in two regions B and C, which are such that shocks have the

same sign and the divergence in inventories is not too low (I1− I2 > 1
2QD). Therefore, expected

transaction costs should be lower in a fragmented market when the probability to observe shocks

of the same signs is sufficiently high and the probability of having divergent inventories among

market-makers is also sufficiently high. The latter condition depends on φD, which should not

be too large (φD < Φ2
γ) for that condition to be true. When the probability that shocks have

opposite sign increases (γ → 1/3), prices are at best as competitive as in a centralized market

(region D) or worse (region A2). For innocuous expected transaction costs, the probability of

observing a very low divergence in inventories should be high, i.e., the standardized quantity φD

should not be too small for this probability to be high (Φ1
γ < φD).

16Given that ζD > ζS , φD > φS , and (1 − γ)(φD − (φD)2

3
) ≥ 0), we deduce that φD − (φD)2

3
− (1 − γ) >

γ(φD − (φD)2

3
)− (1− γ). The indirect impact of a second venue is thus stronger for a satellite venue.
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Propositions 2 and Corollary 1 imply that when same-sign shocks are more likely (implying

an anticompetitive cross-market cost linkage), local liquidity deteriorates but global liquidity

improves. The latter result is due to the intensified competitive pressure caused by the possibility

to compete in only one venue. The opposite effect is found when the probability of having shocks

of opposite sign is high.

Degryse et al. (2015) investigate the entry of Chi-X on the liquidity of Dutch stocks between

2007 and 2009. They find that fragmentation of transparent venues impairs local liquidity but

improves global liquidity. These findings are consistent with our model predictions. Degryse

et al. (2015) do not report any estimates of γ, but it is likely that it is above 1/3.17 We would

then be in the ultra-competitive case predicted by our model, in which the anticompetitive cross-

market cost linkage is offset by the intensified competitive pressure caused by the possibility to

compete in only one venue.

2.3.3 Interconnected liquidity

Proposition 2 shows that local expected spreads are indirectly influenced by orders sent to other

venues due to the presence of strategic multi-venue market-makers. The latter make the liquidity

of different venues interrelated in our model, as stated by the following Proposition:

Proposition 3 Bid-ask spreads across venues co-vary jointly:

Cov(sD, sS) = ζ
(
ρσ2(Iu − Id)

)2(
γ × gφD(φS) + aφD

)
(8)

where gφD and aφD are expressed in Appendix. Furthermore, Cov(sD, sS) increases with γ.

Proposition 3 entails two main remarks. First, our model proposes a new explanation for

inter-venue connectedness, namely the strategic quote placement by market-makers in response

to non-constant marginal costs to supply liquidity across venues (termed as the cross-market

17Our own estimate of γ (see d POS in Table 1) is 59% for a period using a sample of stocks (Dutch cross-listed
stocks) and venues (Euronext) similar to Degryse et al. (2015).
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cost linkage in our model). This explanation is distinct from those found in the literature which

have focused on arbitrage strategies (Foucault et al., 2017; Tomio, 2017), duplicate strategies

(van Kervel, 2015) or directional trading strategies (Chowdhry and Nanda, 1991; Baldauf and

Mollner, 2017).18

Second, Proposition 3 shows that local bid-ask spreads co-vary more when γ increases.

Kirilenko et al. (2017) suggest that the probability of having same-sign shocks is higher during

period of crisis. Liquidity interconnectedness thus increases during period of market distress.

This finding is also emphasized in our model by the quadratic dependency of the covariance

to market-makers’ risk aversion. During market distress, funding constraints or capital at risk

constraints of market-makers are also more likely to increase, which translates in our model by

an increase in market-maker’s risk aversion, and a further rise in liquidity interconnectedness

across venues. This result is consistent with the finding of Klein and Shiyun (2017) related to

the increase in European liquidity betas during the 2008 financial crisis.

2.4 Testable implications

To establish the external validity of our modeling approach, we adopt a two-step empirical

strategy. In the first step, we investigate whether cross-market inventory effects are present

in the Euronext limit-order book environment. This step is meant to empirically validate our

assumption that aggregate inventory is a driver of multi-venue market-making strategies.19 In

the second step, we proceed to test the main prediction of our model, derived from Proposition

1.20

18See Cespa and Foucault (2014) for interconnectedness across different assets.
19The literature has so far focused mostly on within-venue inventory effects in the context of dealer markets

and the specialist-based model of the New York Stock Exchange (NYSE). See, among others, Hansch et al. (1998)
and Reiss and Werner (1998) for London equity dealers, Bjønnes and Rime (2005) for foreign exchange dealers,
or Panayidès (2007) for NYSE specialists.

20We acknowledge that our model with two strategic market makers competing in two transparent venues is
very stylized. The model highlights however two new driving forces shaping price competition, which does not
depend on any market structure. Even if the best prices would be different in case of competition between two
limit order books, limit order traders would also face an “intense-competition” case versus a “low-competition”
case.
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2.4.1 Testing the validity of a cross-venue inventory model

Our model assumes that market-maker i’ multi-venue quoting strategy is governed by her aggre-

gate inventory, defined at time t as the cumulated net volume of transactions across all trading

venues : Ii,t = Ii,0 +
∑τ=t

τ=0QD,τ +
∑τ=t

τ=0QS,τ where Ii,0 is the initial inventory. Our model

implies that market-makers should react to a change in their aggregate inventory by adjusting

quotes in all venues. In particular, after a trade, say in venue S, that increases the inventory

exposure, a multi-venue intermediary should update quotes in venue S, but also in venue D

to elicit inventory-reducing orders. We specifically focus on cross-venue inventory effects that,

to the best of our knowledge, have never been investigated. Formulating our hypothesis in the

context of the limit-order-book environment of Euronext, we test whether, for instance, after

executing a sell order in the satellite venue that increases the total inventory exposure, a multi-

venue market-maker is more likely to cancel an existing buy order in the dominant market, or

modify it for a less aggressive price (negative revision), or post a new sell limit order in the

dominant market or modify an existing sell order for a more aggressive price (positive revision).

We thus posit the following hypothesis:

Hypothesis 1 Multi-venue market-makers should update existing limit orders or submit new

orders in one venue after a trade in another venue, in a direction that is associated with their

inventory changes.

We acknowledge that other trading strategies, such as cross-venue arbitrage, could lead to order

placement patterns that resemble those due to inventory considerations. In case, say, the bid

price in venue S jumps above the best ask in venue D, an arbitrageur might step in and sell

one share in venue S, and buy one in venue D to reduce the existing price discrepancy. The

buy and sell orders submissions from the arbitrageur are empirically similar to inventory-driven

strategies. A way to distinguish these strategies is to take into account the aggressiveness of

the initial transaction. In case there is an arbitrage opportunity, we expect arbitrageurs to
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post aggressive orders in a venue simultaneously/after an active transaction in another venue.21

In contrast, after a passive transaction (existing limit orders passively hit), we expect more

messages related to inventory management. We thus control for arbitrage opportunities and for

the transaction aggressiveness in our empirical analysis.

2.4.2 Testing the main prediction of the model

Proposition 1 brings a novel prediction that relates price competitiveness to the signs of the

shocks to absorb (same or opposite) and the divergence in intermediaries’ inventories. In par-

ticular we expect tighter bid-ask spreads when competition gets more intense, i.e., when shocks

in each venue have the same sign and the divergence in members’ inventories increases (the

ultra-competitive case). We thus formulate the following hypothesis:

Hypothesis 2 Variations in spreads in one venue depend on the directions of order flows in

both venues (identical or opposite), on the divergence in intermediaries’ inventories, and on the

interaction between the two.

Note that bid-ask spreads vary more in the satellite venue than in the dominant venue, due

to a larger impact of the cross-market cost linkage and due to larger variation in competition

intensity. Recall that, despite a shock of a smaller magnitude, the best ask price in the satellite

venue may be higher than the one in the dominant venue (low-competition region to the left of

the point p on Figure 3). In contrast, when divergence is high (ultra-competitive region to the

right of the vertical line QD), competition heats up and the best ask price in the satellite venue

is smaller than in the dominant venue (reflecting the smaller quantity to absorb).

This prediction is novel and interesting because it allows us to depart from a competing

adverse-selection hypothesis and from a competing pure risk-sharing hypothesis. First, in case a

(fast) informed trader with simultaneous access to all venues would split his orders across venues,

the adverse selection component of multi-venue market-makers should increase. Market-makers

21We call a transaction “active” when intermediaries trade through a liquidity demanding order like a market
or marketable order.
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should reduce their liquidity supply in all venues (van Kervel, 2015). Quoted bid-ask spreads

should thus increase in all venues if order flows across venues have same direction, like our

cross-market cost linkage. Our model however predicts that adding an interaction term between

the direction of order flows and a measure of divergence in inventories should have a negative

impact on spreads, unlike the adverse-selection hypothesis. Secondly, in case market makers

would behave competitively, or in case they would not face non constant marginal costs across

venues, the interaction term would not impact spreads variations.22

3 Empirical Analysis

3.1 Forming the sample

Our analysis uses a proprietary dataset from Euronext on multi-listed stocks. Euronext was

created in 2000 as a result of the merger of three European exchanges, namely Amsterdam,

Brussels and Paris. The Lisbon exchange joined in 2002.23 Before the introduction of the

Universal Trading Platform (UTP) in 2009, each of the four exchanges maintained their domestic

market. As a result, firms could be multi-listed on several Euronext exchanges; for example,

Suez was traded in Paris and Brussels.

Our sample consists of all multi-traded stocks within Euronext, spanning four months (79

trading days) from January 1, 2007 to April 30, 2007.24 The data on orders and quotes are

provided by Euronext. Euronext files also provide us with the identification of the member

participating in each quote or transaction, and whether the member is acting as an agent or

as a principal (that is, either as a proprietary trader or an exchange-regulated market maker).

The data assigns a unique identifier to each member, enabling us to trace members’ inventory

changes and quoting behavior across time, across stocks, and across exchanges. During the

22In the Online Appendix, we suppose that market-makers behave competitively. Appendix A shows that the
ultra-competitive case is not obtained for same-sign shocks and a high divergence among market-makers’ inventory
positions.

23Euronext has expanded to five exchanges with the acquisition of the Dublin exchange in 2017.
24Four trading days are dropped in January due to missing data about best limits.
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sample period, Euronext exchanges followed the same market model (same trading hours, same

trading fees, and same trading rules), and the payment of membership fees granted access to

all Euronext markets. Note also that, during this period (pre-MiFID environment), trading was

concentrated in Euronext.25 For all these reasons, Euronext is an excellent environment to test

the predictions of our model. Other stock-level information comes from Compustat Global.

We keep firms that trade in euros using a continuous trading session in at least two exchanges

on which they are traded. To avoid introducing threshold effects, we follow a conservative

approach and keep all members who trade at least once in each of the two exchanges on which

the stock is traded. Overall, we follow 46 multi-venue members. Because these members do

not necessarily follow the same stocks, our sample finally consists of 178 pairs (stock, member),

among which 20% involve an exchange-regulated market-maker (registered as such in at least

one market on which the stock is traded), called thereafter Designated Market-Maker (DMM)

(see Panel C of Table 1).26

The final sample contains 20 firms with at least one multi-venue member, trading continu-

ously in two Euronext exchanges. Among them, 11 are traded on Euronext Amsterdam, 12 are

traded on Euronext Brussels and 17 on Euronext Paris. To determine which is the dominant

market (market D in the model) and which is the satellite market (market S in the model), we

use the primary market as the (exogenous) dominant platform.

3.1.1 Measuring liquidity

We measure the spread in the market m as the equally-weighted average bid-ask spread for

stock j, during a twenty-minutes interval t.27 We focus on the relative bid-ask spread RBAS m,

25Some French stocks were traded on the London Stock Exchange or the Deutsche Böerse, while some Dutch
stocks were traded on Xetra. Gresse (2017) finds a market share of 96.45% for CAC40 stocks and even 99.99%
for other SBF120 stocks in October 2007. Degryse et al. (2015) also find that Dutch stocks are overwhelmingly
traded on Euronext.

26Our paper does not compare the liquidity provision of exchange-regulated market-makers versus endogenous
market-makers, as Anand and Venkataraman (2016) do using Canadian data. We however keep trace of difference
in trading behaviors.

27We compute both equally-weighted and time-weighted averages of the quoted spreads. As the results for
the two weighting schemes are virtually identical, we restrict the presentation to the equally-weighted spread
measures.
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and the variation of the relative spread between two consecutive intervals, ∆RBAS m, where

m = DOM,SAT .

3.1.2 Measuring aggregate inventory

In our dataset, the initial inventory position (I0) of members is not observable. Moreover,

members differ in the amount of capital at risk they commit to their trading activities and/or in

their tolerance for risk, which makes inventories not comparable to each other. We thus follow

Hansch et al. (1998) methodology by building standardized inventory positions to deal with these

unobservable characteristics. Let IP si,t denote the inventory position of multi-venue member i in

stock s at time t. We use the record of all trades executed by i in all venues, plus the direction

of these trades to obtain her aggregate or net inventory position.We thus construct a time series

for each member’s inventory position in each stock across all Euronext venues from the start to

the end of our sample period. Since at the time more than 95% of the volumes were traded on

Euronext, our inventory variable is a good proxy for intermediaries’ aggregate inventories. We

compute the mean (IP
s
i ) and the standard deviation (σi) for each of these inventory series. The

standardized inventory is defined as

Isi,t =
IP si,t − IP

s
i

σsi
.

We then build a measure of divergence in inventories. Let IsM,t denote the median inventory

at time t in stock s, and let IDi,t = |Isi,t−IsM,t| denote the member i’s inventory position relative

to the median inventory. The larger IDi, the more divergent the inventory of member i relative

to the median is, and the more competitive her quotes are, in order to reduce her inventory

exposure (Hansch et al., 1998). We take the mean of inventory divergence across intermediaries

at time t in each stock s, RI
s
t , to get a proxy of divergence in intermediaries’ inventories (I1− I2

in our model).
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3.1.3 Determining the direction of order flows across venues

The model’s predictions depend on whether liquidity demands sent across venues have the same

or the opposite direction. We proxy liquidity demand by the net order flow in market m (i.e.,

trade imbalance) in stock s during a twenty-minutes interval, TrIMB m, as the number of

buyer-initiated trades minus the number of seller-initiated trades.28 Trade imbalance is positive

is there are at least as many buy initiated trades as sell initiated trades, and negative if there

are strictly more sell initiated trades than buy initiated trades. The dummy variable d POS is

defined when there are trades in both markets; it takes the value of one if order flows have the

same direction across venues (TrIMB DOM × TrIMB SAT > 0) on a given twenty-minutes

interval, and zero if order flows have opposite signs across venues. Note that we exclude the first

and last five minutes of trading in order to avoid contamination by specific trading behaviors

during the open or close of the markets.29

3.1.4 Control variables

In our regression specifications, we control for the existence of arbitrage opportunities. This

is necessary because, by buying the asset in one venue and reselling it in the other venue,

arbitrageurs behave as inventory-driven market-makers. We only consider realized arbitrage

opportunity. The dummy d AO takes the value of one if the best bid in one venue exceeds the

best ask in the other venue, i.e., max(Bid SAT ,Bid DOM) > min(Ask SAT ,Ask DOM) and

if two opposite trades occur at these prices. We also expect arbitrageurs to use more often active

transactions (marketable orders) than passive transactions (non-aggressive limit orders) to take

fast arbitrage opportunities. We thus use the dummy d AT which takes the value of one if the

origin of transaction executed by the member is a market/marketable order, and zero if it is a

limit order hit. In some regressions, we also control for the pending time to the next market

close (TimeClos), the (log) transaction size in number of shares (TrSize), and the number of

28Note that our data specify the sign of trades.
29On February 19, 2007, the closing fixing moved from 5:25 pm to 5:30 pm. We therefore drop all observations

before 9:05 am and after 5:20 pm.
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trades NbTr.

3.2 Summary statistics

Table 1 presents summary statistics for our sample. Panel A presents statistics across stocks.

The average (median) firm has a stock price of 53.3 (50.09) Euros, a market cap of 30.6 (20.4)

billion Euros, and 9 (5) multi-venue members trading on the stock. There is an average number

of 3 realized arbitrage opportunities per day, and 59% of order flows across venues have the same

direction. Panel B presents statistics computed within each market. Relative (quoted) spreads

of the satellite market are five to ten times larger than those of the dominant market, depending

if one takes means or medians. The daily number of trades is much smaller (twenty five times

less in average) in the satellite market, reflecting lack of trade activity, and transaction size is

also much smaller. Surprisingly, the daily number of best limit updates is only three times less

in average in the satellite venue. This suggests that the satellite market is not a very active

trading place, but it is closely monitored. T-tests of the difference in means between the two

markets (not shown) confirm the statistical significance of these differences. Panel C presents

statistics computed for each multi-venue member. There is considerable heterogeneity in terms

of member trading activity, resulting from our conservative selection. The average multi-venue

member makes 70 trades per day in the dominant market and 9 trades in the satellite market,

but the median member only does 8 and 1 respectively. Panel C also shows the mean reversion

parameter in members’ aggregate inventory, obtained by estimating the following regression

model of inventory time series for each pair (stock, member),

∆Iit = α+ βIit−1 + εt,

where ∆Iit is the change in aggregate inventory from the previous trade. Mean reversion predicts

that β < 0 (if β = 0, it has a unit root and it is non-stationary). Across the 178 pairs, Panel C

shows that the average mean-reversion parameter (β) is -0.073, which means that multi-venue
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members reduce, in average, inventory by 7.3% during the next trade.

3.3 Multivariate analysis

3.3.1 Inventory management across venues

The first step of our empirical analysis is to validate that aggregate inventory matters for multi-

venue members. Panel C already shows that aggregate inventories of some members are mean-

reverting, which is consistent with the model. We now investigate whether a multi-venue member

sends inventory-driven messages in one venue in response to a transaction in another venue (that

is, a transaction that causes a change in her aggregate inventory). We focus on messages routed

to the dominant market after a transaction in the satellite market, because effects in the more

liquid market should be more easily detected. For example, after a buy in the satellite market,

a multi-venue member should cancel or negatively revise existing buy orders – or submit new

sell orders or positively revise sell orders in the dominant market. The opposite should occur

after a sell. We implement the following Logit regression:

Pr(d iτ ) = α+ β1d DMM + β2|Ii,τ−1|+ β3d DMM × |Ii,τ−1|

+β4d AOτ + β5log(TrSizeτ ) + β6TimeClosτ + ετ , (9)

where d i is the dummy variable that takes 1 if member i sends a message in the dominant

market in direction of inventory following a trade at time τ in the satellite market.30 The ex-

planatory variables are the lagged absolute inventory position of member i, the dummy variable

for designated market-makers, and the interaction between both. We control for the existence

of an arbitrage opportunity at the time of the trade, the size of the trade, and the pending time

to the close. Our specification also includes firm fixed-effects to control for time-invariant firm

heterogeneity. We run the regression both after an active and a passive transaction.

The results of the Logit analysis are presented in Table 2. Panel A reports the results

30Messages are tracked through their first 10 seconds after a trade.
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for order submissions after a passive transaction, while Panel B reports the results for order

submissions after an active transaction. First, in both cases, the likelihood that multi-venue

members use “inventory-driven” strategies is larger when they are dedicated market-makers.

Second, these trading strategies seem different according to whether the change in aggregate

inventory has been caused by a passive transaction or an active transaction, consistently with

the discussion of Hypothesis 1. The probability to post cross-venue inventory-driven messages is

negatively related to the existence of an arbitrage opportunity when the transaction is passive,

while it is significantly positively related when it is active.

In particular, Panel A shows that, when the transaction is passive, dedicated market-makers

are more likely to use cross-venue inventory-driven messages, even more likely when their ag-

gregate inventory is large. This finding validates the assumption of the model that multi-venue

members manage inventory risk across multiple venues. When the transaction is active, Panel

B shows that the coefficients of the dummy Arbitrage Opportunity and the dummy for des-

ignated market-maker are positive and significant. This suggests that multi-venue designated

market-makers take arbitrage opportunities by posting aggressive orders in the two venues. This

is in line with the role that Euronext assigns to designated market-makers in cross-listed stocks.

Note that, in this case, the aggregate inventory of dedicated market-makers has no significant

impact, supporting the notion that the observed sequence of messages is driven by an arbitrage

trading strategy.

In summary, these results are consistent with Hypothesis 1 of multi-venue members using

cross-venue strategies to manage inventory aggregated over all venues.

3.3.2 Spreads

To test the main prediction of our model (Hypothesis 2), we estimate the relation between the

variation in twenty-minute bid-ask spreads in the satellite market and the intensity of price

competition among multi-venue members which is related to the divergence in their inventories
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(RI
s
), to the direction of order flows across venues (i.e., whether the dummy d POS is equal to

one), and to the interaction between the two. We run the following panel regression model:

∆RBAS SAT st = α+ β1d POS
s
t + β2RI

s
t−1 + β3d POSt ×RI

s
t−1 + β4NbTr SAT

s
t + εst . (10)

Proposition 1 predicts that the sign of the order flows routed across venues impacts the

spreads. More specifically, we expect the following sign: β1 > 0 due to the anticompetitive

effect of the cross-market cost linkage when shocks hitting venues have the same sign. We also

expect that in case of both a large divergence in inventories and same-sign shocks, at least

one member competes more intensely to execute all orders across venues, implying β3 < 0.

This interaction term allows us to distinguish our predictions from those of an adverse selection

model, since the latter would predict β3 ≥ 0. Finally, the number of trades in the satellite

market, NbTr SAT , controls for the activity in the satellite market.

All specifications include day dummies and use clustered standard errors by stock to accom-

modate the possibility that relative spreads are strongly correlated within firms.

Table 3 presents estimation results. We report two specifications: the first with time fixed

effects (Column 1) and the second with day and firm fixed-effects. The main conclusions from

the analysis are as follows. First, spreads in the satellite market vary with the direction of order

flows across venues (coeff. 0.108, t-stat. 2.14 in column 1). This result is consistent with the

cross-market cost linkage Second, the variable of interest which is the interaction term between

same-sign order flows and divergence in inventories has a negative and statistical significant

impact on spreads changes (coeff. -0.12, t-stat. -2.00). Estimates in columns (1) and (2) imply

that a one-standard deviation shock in the divergence in inventories (RI) is associated with a

negative change of 0.9 basis point in relative spreads.31 Spreads in the satellite market are thus

significantly lower when there exists members holding large aggregate inventory and when order

flows across venues have the same sign, supporting Hypothesis 2. This result is consistent with

31The average change in relative spreads is 0.46 basis point. The standard deviation of the variable RI is 0.2678.
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the case of intense competition among intermediaries illustrated by Regions B and C of Figure

4, and uniquely predicted by our model. Results for other control variables are not statistically

significant. Overall, the results in Table 3 corroborate the main implication of the model.

4 Conclusion

We develop a two-venue duopoly model in which prices posted in each venue by fast market-

makers are guided by their net inventory position aggregated across all venues. This implies that

executing a trade in one venue simultaneously changes marginal costs to provide immediacy in all

other venues. This cross-market cost linkage is a new and additional channel altering competition

in a fragmented market. Moreover, strategic market-makers are not forced to undercut in each

venue, but strategically choose to compete for the shock they would like to absorb. We show

that the cross-market cost linkage and the possibility to undercut in only one venue may increase

competition and enhance liquidity.

In our model, local bid-ask spreads depend: (i) on whether demand shocks hitting venues

have same sign; (ii) on whether at least one market-maker holds an extreme inventory position;

and (iii) on the interaction between the two. We exploit the co-existence of multiple identical

order books for the same security within Euronext (before 2009) to test our model. First, we

uncover new evidence of cross-venue inventory effects. Second, our panel regression analysis

reveals that local bid-ask spreads vary in a way which is uniquely predicted by our competition

model.

Our results suggest that the cross-market inventory cost linkage is an alternative mecha-

nism to the information channel that explains common factors in liquidity. Effects could be

emphasized if we now consider a market participant trading a portfolio of assets with correlated

returns. Market-makers quotes’ placement across venues should take into account her aggregate

inventories in all assets in portfolio and how they fluctuate together. The impact of multi-venue

multi-asset market-making raises challenging questions related to liquidity spillovers across as-
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sets and across venues. While this is an issue outside the scope of this paper, we believe it is an

interesting topic for future research.
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Figure 1: One day of two-venue quotes placement and aggregate inventory of a Euronext
multi-venue intermediary trading Suez

Figure 1 plots the aggregate inventory of a Euronext intermediary trading Suez and the prices that she posts on
Euronext Paris and Euronext Brussels, compared to the midpoint during that trading day, January 19, 2007. The
intermediary is a formally registered market-maker in Suez. The top graph plots three series of prices. The pink
dash-dotted line plots the midpoint computed as the average between the consolidated best ask and best bid, i.e.,
the lowest ask (resp. the highest bid) across the dominant and the satellite market. The hollow circles depict
the prices that the market-maker posts in the satellite market while the dark-blue triangles depict her quotes
in the dominant market. Euronext Paris and Euronext Brussels are limit order books: the figure only depicts
the liquidity supply activity of the market-maker (limit order placement). The bottom graph plots the aggregate
euro inventory of the market-maker for the day, which is computed using the record of all signed market-makers’
trades multiplied by the price of transaction across all trading venues.
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Figure 2: Tree of the quoting game across trading venues

Figure 2 represents the tree of the trading game. At date 1 (not represented on the Figure), market-maker i is
endowed with an inventory position denoted Ii. At date 2, venue m is hit by a liquidity shock, denoted Lm, with
probability ζm. Lm generates a liquidity demand Qm, which is positive (resp. negative) with probability 1

2
(resp.

1
2
). The probability that shocks simultaneously hit both venues is denoted ζ (= ζD × ζS). The probability that

shocks have the same sign is denoted γ. The paper analyzes price formation across venues when the global order
flow is net-buying, i.e., QD +QS > 0. Symmetric results are obtained for a net-selling global order flow. At date
3, market-maker i posts simultaneously a price in venue D and a price in venue S. We denote ami (resp. bmi ) the
ask price (resp. bid price) that i posts in venue m if Qm > 0 (resp. Qm < 0), m = D,S.
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Figure 3: Illustration of Proposition 1

Figure 3 illustrates Proposition 1. Panel A shows equilibrium selling prices in a fragmented market when buy
shocks hit simultaneously venues D and S. Panel B depicts best prices when a buy shock hits venue D (Panel
B (a)) and a sell shock hits venue S (Panel B (b)). The dotted magenta line depicts the best ask price in a
centralized market, the cyan dashed line plots the best selling price in venue D, and the plain blue line plots the
best ask (Panel A) or best bid (Panel B) price in venue S depending on the sign of the shock hitting S. In case of
two positive shocks the intersection point of the 3 equilibrium prices ((ac)∗, (aD)∗ and (aS)∗), termed p, is also
represented in Panel A. p is such that I1 − I2 = Q

2
. The vertical line QD separates the region in which there is a

low divergence in market-makers’ inventories (I1−I2 ≤ QD) from the region in which there is a high divergence in
inventories (I1 − I2 > QD). Parameters are QD = 5, 000, |QS | = 2, 000, Iu = 15, 000, Id = 0, µ = 50, σ2 = 0.001,
ρ = 1, I2 = 5, 000, I1 is varying.
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Figure 4: Is market fragmentation good for transactions costs?

Figure 4 partitions the set of parameters into 5 different regions. The y-axis represents the shock hitting S, QS ,
which might be positive or negative and the x-axis represents I1 − I2 −QD varying from −QD to Iu − Id −QD.
The product (I1 − I2 − QD) × QS determines whether market-maker 1 is capacity-constrained (see Lemma 1).
The vertical line − 1

2
QD is such that prices are identical across all venues or market structures (see comments

on p in Figure 3 Panel A). The red regions A1 and A2 are such that ex post transaction costs are higher in a
fragmented market (TTrC − TTrCc > 0). In the other 3 regions (B, C, and D) ex post transaction costs are
equal or strictly smaller than those in a centralized market. The neutral region D is such that fragmentation is
innocuous: TTrC − TTrCc = 0. Region B in light green is such that transaction costs are lower in a fragmented
market (TTrC − TTrCc ≤ 0). Region C in dark green is such that transaction costs are strictly lower in a
fragmented market (TTrC − TTrCc < 0) (region of the “ultra-competitive case”).
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Table 1

Summary Statistics

This table reports summary statistics for the data used in this study. The sample consists of 20 multi-listed,

continuously-traded stocks on Euronext exchanges, from January 1, 2007 through April 30, 2007 (79 trading

days). The quotes and trades data comes from Euronext, and other stock-level information comes from Compustat

Global.

Panel A reports the daily mean across the 20 stocks for the variables used in this study. Market capitalization is

price times shares outstanding, in millions of Euros. Number of Trades is the number of transactions per day across

the total number of trading venues. Number of Messages is the daily total number of orders (submissions, revisions,

cancellations) across the total number of trading venues. Trade Size is the daily average size of transactions across

trading venues. Number of Realized Arbitrage Opportunities is the daily number of times the best bid in the

dominant (resp. satellite) market is greater than the best ask in the satellite (resp. dominant) market and buy

and sell trades by the same intermediary are observed during the window of the arbitrage opportunity. Number

of multi-venue intermediaries is the total number of market-makers as defined in Section 3.1. Average Inventory

Divergence (RIm) is the average divergence in market-makers’ inventories, where inventories are measured each

20 minutes interval. d POS is a dummy variable that takes the value of one if order flows across venues have the

same direction.

Panel B reports summary statistics by market type. It contains news variables. Bid-Ask Spread is the equally-

weighted average difference between the best bid and the best ask during the day. Relative Spread is equal to

the equally-weighted average of ratio between the spread and the midpoint. Number of Best Limits Updates is

the total number of times there is a change in the best limits. Percentage of Active Trades is the ratio of the

number of transactions caused by a market or a marketable order over the total number of transactions in the

trading venue. Percentage of Passive Trades is the ratio of the number of limit order hit over the total number of

transactions in the trading venue. Percentage of Cancellations (resp. New Submissions) is the ratio of the number

of cancellations (resp. new submissions) over the total number of messages in the trading venue. Percentage of

Revisions is the ratio of the number of revised orders (messages other than new submissions and cancellations)

over the total number of messages in the trading venue.

Panel C reports summary statistics by multi-venue intermediaries. d DMM is the dummy that take one if the

multi-venue intermediary is an exchange-regulated market-maker, also called Dedicated Market-Maker (DMM) in

the stock. Number of Trades in D is the average daily number of transactions executed in the dominant venue.

Number of Trades in S is the average daily number of transactions executed in the satellite venue. Percentage

of Passive Transactions in S is the ratio of the number of limit order posted by the intermediary i which are hit

in the satellite market over the total number of transactions. Percentage of Messages in Direction of Inventory is

the ratio of the number of messages submitted within 10 seconds in the dominant market after a transaction in

the satellite market which are in direction of inventory management over the total number of messages submitted

within 10 seconds in the dominant market after a transaction in the satellite market. Delay to submit a message

in direction of inventory is the number of second between a transaction in S and an inventory-driven message in

D.
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Table 1 

Summary statistics (cont.) 

 

Panel A. Summary statistics by stock 

 N Mean Std. Dev. Q1 Median Q3 

Market Capitalization (in billion) 1197 30589 33500 2396 20438 50089 

Price 1577 53.30 36.40 25 50 70 

Number of Trades 1577 2645 3142 73 1635 4213 

Number of Messages 1577 9850 9924 1524 7079 15355 

Trade Size 1553 491 576 33 304 1617 

Number of Arbitrage Opportunities 1577 3 9 0 0 3 

Number of multi-venue intermediaries 1577 9 9 3 5 10 

Average inventory divergence, RI_m 1577 .62 .36 .38 .59 .82 

d_POS 1224 .59 .29 .45 .60 .76 

Panel B. Summary statistics by venue 

B.1 Dominant venue 

 N Mean Std. Dev. Q1 Median Q3 

Bid-Ask Spread 1577 .11 .13 .022 .06 .16 

Relative Bid-Ask Spread 1577 .28 .37 .07 .12 .27 

Number of Best limits Updates 1577 6059 5095 776 4847 9655 

Number of Trades 1577 2577 3108 73 1449 4055 

Percentage of Active Trades 1577 45 26 28 39 54 

Percentage of Passive Trades 1577 55 26 45 60 72 

Percentage of Cancelations 1407 12 13 0 9 21 

Percentage of Revisions 1407 33 36 4 17 60 

Percentage of New Submissions 1407 22 17 5 25 34 

Transaction Size 1577 620 684 192 360 779 

B.2 Satellite venue 

 N Mean Std. Dev. Q1 Median Q3 

Bid-Ask Spread 1564 1.24 2.38 .066 .33 1.55 

Relative Bid-Ask Spread 1564 1.87 3.28 .24 1,00 1.98 

Number of Best limits Updates 1551 2614 3797 81 794 4040 

Number of Trades 1109 95 385 0 3 20 

Percentage of Active Trades 1109 31 28 0 30 45 

Percentage of Passive Trades 1109 69 28 55 70 100 

Percentage of Cancelations 1395 8 11 0 4 10 

Percentage of Revisions 1395 79 26 70 90 98 

Percentage of New Submissions 1395 8 12 0 4 11 

Transaction Size 1109 348 369 100 250 485 
 

Panel C. Summary statistics by multi-venue intermediary 

 N 
Mean 

Std. 
Dev. Q1 Median Q3 

Dummy for Dedicated Market-Maker 178 0,19 0,39 0,00 0,00 1,00 
Average Mean Reversion of Inventory 178 -0,073 0,150 -0,314 -0,013 0,001 

Number of Trades in D 178 70 131 0 8 377 

Number of Trades in S 178 9 28 0 1 69 

Percentage of Messages in Direction of Inventory 110 66 30 0 66 100 

Percentage of Passive Transactions in S 178 53 30 0 52 98 

Delay to submit a message in Direction of Inv.  110 3 2 0 3 8 



Table 2

Likelihood of Expected Inventory-driven Message

following a Transaction in the Satellite Market

This table presents estimates of the relation between the likelihood of an inventory-driven message posted by the

intermediary i in the dominant market after a trade in the satellite market. The left-hand side variable is Indicator

of Expected Message, a dummy variable that takes the value 1 if the message has the expected value. Left-hand

side variables are described in caption of Table 1. DMM×Standardized Inventory is an interaction term equal

to the product of DMM and Standardized Inventory. Panel A shows regression specifications in the subsample

of passive transactions. Panel B shows regression specifications in the subsample of active transactions. All

specifications include firm fixed effects and t-statistics are calculated using standard errors clustered by liquidity

supplier. The symbols ***, **, * denote significance levels of 1%, 5% and 10%, respectively for the two-tailed

hypothesis test that the coefficient equals zero.

Panel A. Passive Transactions

Dependent variable: Indicator of Expected Message

(1) (2)

Log Trade Size 0.032 0.032
(1.05) (1.05)

Standardized Inventory 0.018 -0.02
(0.56) (-0.55)

DMM 1.522 *** 1.377 ***
(3.70) (3.42)

Arbitrage Opportunity -0.310 *** -0.309 ***
(-3.31) (-3.33)

Time to close 0.025 0.025
(1.38) (1.36)

DMM × Standardized Inventory 0.187 **
(2.33)

Intercept 0.217 0.243
(0.66) (0.74)

Firm FEs Yes Yes
N 18,022 18,022
Pseudo R2 0.06 0.06
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Panel B. Active Transactions

Dependent variable: Indicator of Expected Message

(1) (2)

Log Trade Size -0.015 -0.014
(-0.45) (-0.45)

Standardized Inventory -0.005 0.043
(-0.08) (0.59)

DMM 0.646 ** 0.733 ***
(2.44) (3.76)

Arbitrage Opportunity 0.597 *** 0.603 ***
(4.46) (4.58)

Time to close 0.013 0.014
(0.80) (0.81)

DMM × Standardized Inventory -0.125
(-0.67)

Intercept 1.402 ** 1.348 **
(2.30) (2.10)

Firm FEs Yes Yes
N 9,100 9,100
Pseudo R2 0.06 0.06
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Table 3

Determinants of Relative Spreads in the Satellite Market

This table presents estimates of the relation between changes in relative bid-ask spreads in the satellite market

and the divergence in intermediaries’ inventories and the direction of order flows across venues. The left-hand side

variable is the Change in Relative Spread of the Satellite market in the 20-minutes interval. The right-hand-side

variables are defined in caption of Table 1. d POS×Lag AbsoluteRI is an interaction term equal to the product

of the dummy of same-sign shocks (d POS) and Lag AbsoluteRI. t-statistics are calculated using standard errors

clustered by firm. The symbols ***, **, * denote significance levels of 1%, 5% and 10%, respectively for the

two-tailed hypothesis test that the coefficient equals zero.

Dependent variable: Change in Relative Spread of Market S

(1) (2)

d POS 0.108 ** 0.105 **
(2.14) (2.13)

Lag Absolute RI 0.087 0.076
(1.14) (1.34)

d POS × Lag Absolute RI -0.12 ** -0.119 **
(-2.00) (-2.01)

Number of Trades in Market S -0.050 0.004
(-1.30) (0.12)

Intercept -0.078 -0.065
(-0.93) (-1.03)

Time FEs Yes Yes
Firm FEs No Yes
N 11,172 11,172
Adjusted R2 0.01 0.03
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A Appendix

A.1 Intermediaries’ trading profits

Market-maker i’s trading profit is given by:

Vi
(
pD1 , p

D
2 , p

S
1 , p

S
2

)
=



pDi QD + pSi QS − TCi(QD +QS)︸ ︷︷ ︸
≡vi(QD+QS)

if pDi QD < pD−iQD and pSi QS < pS−iQS ,

pDi QD − TCi(QD)︸ ︷︷ ︸
≡vi(QD)

if pDi QD < pD−iQD and pSi QS > pS−iQS ,

pSi QS − TCi(QS)︸ ︷︷ ︸
≡vi(QS)

if pDi QD > pD−iQD and pSi QS < pS−iQS ,

0 if pDi QD > pD−iQD and pSi QS > pS−iQS .

where TCi(Q)(= ri(Q) × Q) denotes the inventory costs to absorb the shock Q for market-maker i
(Q = QS , QD or QD +QS), pDi denotes the price set by market-maker i in venue D, and pSi denotes the
price posted by i in venue S, i = 1, 2. The price pmi is an ask price if Qm > 0 and a bid price if Qm < 0,
m = D,S.32

A.2 Proof of Lemma 1

We consider two cases separately.

Case 1 (“Virtual consolidation”). We first look for the necessary conditions to be simultaneously
filled to guarantee the existence of an equilibrium in which a single market-maker simultaneously absorbs
the shock in the dominant venue and the shock in the satellite venue.

Market-maker i ∈ {1, 2} executes the global order flow in equilibrium if and only if she simultaneously
posts the best price in the dominant venue and the satellite venue. The lowest ask price aDi prevailing in
venue D, and the lowest ask price pSi (resp. highest bid price) prevailing in venue S when QS > 0 (resp.
when QS < 0) are such that:

i: trading QD +QS is profitable for market-maker i (i.e., vi(QD +QS) ≥ 0), and (i’) not for market-
maker −i (i.e., v−i(QD +QS) < 0);

ii: trading QD +QS is more profitable for market-maker i than trading only QD (i.e., vi(QD +QS) ≥
vi(QD)), or (ii’) only QS (i.e., vi(QD +QS) ≥ vi(QS));

iii: undercutting market-maker i is not profitable for market-maker −i neither in venue D (i.e.,
v−i(QD) < 0), nor (iii’) in venue S (i.e., v−i(QS) < 0).

Using the expression of market-makers’ trading profits V , this set of conditions rewrites as follows:

i : aDi QD + pSi QS ≥ TCi(QD +QS),

i’ : aD−iQD + pS−iQS < TC−i(QD +QS);

ii : aDi QD + pSi QS − TCi(QD +QS) ≥ aDi QD − TCi(QD),

ii’ : aDi QD + pSi QS − TCi(QD +QS) ≥ aSi QS − TCi(QS);

iii : aDi QD < TC−i(QD),

iii’ : pSi QS < TC−i(QS).

32As in Biais (1993), the utility function of intermediaries given in Eq. (1) is linearized, under the assumption
QD < Iu − Id. Note that, in our transparent setting, the criticism on the linear approximation used by Biais
(1993) for opaque markets raised by de Frutos and Manzano (2002) does not apply. The assumption QD < Iu−Id
also guarantees that market-maker i has a probability to post the best price in venue m which is strictly greater
than 0 and strictly lower than 1, for i = 1, 2 and m = D,S.
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• Conjecture 1: the best-quoting market-maker across venues is market-maker 1. Under Conjecture 1,
conditions (ii) and (iii’) write aD1 QD+pS1QS−TC1(QD+QS) ≥ aD1 QD−TC1(QD) and pS1QS < TC2(QS).
Condition (ii) rewrites pS1QS ≥ TC1(QD +QS)− TC1(QD). Combining with (iii’), we deduce that:

TC1(QD +QS) < TC1(QD) + TC2(QS). (A.1)

Straightforward computations show further that if Eq. (A.1) is verified, or equivalently (I1− I2−QD)×
QS > 0, then all conditions (i) to (iii’) simultaneously hold, and Conjecture 1 is verified.

• Conjecture 1a: the best-quoting market-maker across venues is market-maker 2. In that case, conditions
(i) and (i’) rewrite aD2 QD + pS2QS ≥ TC2(QD +QS) and aD1 QD + pS1QS < TC1(QD +QS). Given that
market-maker 2 is the best-quoter, we obtain aD2 QD < aD1 QD and pS2QS < pS1QS .33 However, recall that
I1 > I2 or, equivalently, TC1(QD +QS) < TC2(QD +QS). Therefore, condition (i) cannot hold in that
case and Conjecture 1a is not verified.

Case 2 (“Specialization”). We now look for the necessary conditions to be simultaneously filled
to guarantee the existence of an equilibrium in which each liquidity shock is absorbed by a different
market-maker.

There exists an equilibrium such that market-maker i posts the lowest ask price aDi in venue D and the
opponent −i posts the lowest ask (resp. highest bid) price pSi in venue S when QS > 0 (resp. QS < 0) if
and only if:

(I) trading QD is profitable for market-maker i (i.e., vi(QD) ≥ 0), and (I’) trading QS is profitable for
market-maker −i (i.e., v−i(QS) ≥ 0).

(II) market-maker i is better off trading QD rather than QS (i.e., vi(QD) > vi(QS)) and (III’) market-
maker −i is better off trading QS rather than QD (i.e., v−i(QS) > v−i(QD));

(III) market-maker i is better off trading QD only rather than QD +QS (i.e., vi(QD) > vi(QD +QS))
and (II’) market-maker −i is better off trading QS only rather than QD + QS (i.e., v−i(QS) >
v−i(QD +QS)) ;

These conditions may be rewritten as follows:

I : aDi QD − TCi(QD) ≥ 0,

I ’ : pS−iQS − TC−i(QS) ≥ 0,

II : aDi QD − TCi(QD) > pSi QS − TCi(QS),

II’ : pS−iQS − TC−i(QS) > aD−iQD − TC−i(QD),

III : aDi QD − TCi(QD) > aDi QD + pSi QS − TCi(QD +QS),

III’ : pS−iQS − TC−i(QS) > aD−iQD + pS−iQS − TC−i(QD +QS).

• Conjecture 2: market-maker 1 trades QD and market-maker 2 trades QS. Under Conjecture 2 and
based on condition (III), we get TC1(QD + QS) − TC1(QD) > pS1QS . In case QS > 0, we know that
pS1 > pS2 and, using condition I’, we get TC1(QD + QS) − TC1(QD) > pS1QS > pS2QS > TC2(QS). In
case QS < 0, we get −pS2QS ≥ −pS1QS , or using I’ and III, we get −TC2(QS) > −pS2QS ≥ −pS1QS >
TC1(QD)− TC1(QD +QS). We thus obtain that:

TC1(QD +QS) > TC1(QD) + TC2(QS) (A.2)

Straightforward computations show that if Eq. (A.2) is verified then the set of conditions I to III’ hold
simultaneously and Conjecture 2 is verified.

• Conjecture 2a: market-maker 1 trades QS and market-maker 2 trades QD. Given that I1 < I2,
straightforward computations lead to the following inequality:

TC1(QD) + TC2(QS) < TC2(QD) + TC1(QS). (A.3)

33If QS > 0, aS2 < aS1 and thus aS2QS < aS1QS . If QS < 0, bS2 > bS1 and thus bS2QS < bS1QS . We thus can write
pS2QS < pS1QS for any sign of QS .
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Under Conjecture 2a, we have aD1 QD > aD2 QD and pS2QS > pS1QS . Combining Conjecture 2a with
Inequality (A.3), we obtain aD1 QD+pS2QS−TC1(QD)−TC2(QS) > aD2 QD+pS1QS−TC2(QD)−TC1(QS),
which contradicts conditions II and II’ combined. Conjecture 2a is thus not verified. �

A.3 Proof of Proposition 1

From Lemma 1, we know that we must consider two cases according to the sign of TC1(QD + QS) −
(TC1(QD) + TC2(QS)), or, equivalently, of (I1 − I2 −QD)×QS .

Case 1. Suppose that (I1 − I2 − QD) × QS > 0 (“Virtual consolidation”). In that case, we
know that market-maker 1 posts the best prices across venues (Lemma 1). We now have to consider two
sub-cases according to the sign of QS .

Case 1.1. Suppose that QS > 0. Following Condition (A.1), we must have I1 − I2 > QD. Market-
maker 1 posts the lowest selling price both in venue D and S. The ask prices aD1 and aS1 are the
maximum prices that satisfy the set of conditions i to iii’ (Lemma 1). Combining conditions (ii’) and (iii)
and conditions (ii) and (iii’) and using reservation prices, we get:

ii’ and iii : r1(QD) + ρσ2QS ≤ aD1 < r2(QD),

ii and iii’ : r1(QS) + ρσ2QD ≤ aS1 < r2(QS).

From the two first inequalities, natural candidates for the equilibrium are (aD1 )∗ = r2(QD) − ε and
(aS1 )∗ = r2(QS) − ε, as they are the maximum prices that satisfy conditions ii and iii, ii’ and iii’.
Straightforward computations show that they also satisfy conditions i and i’ described above (details are
omitted for brevity).

Case 1.2. Suppose that QS < 0. In that case, we must have I1 − I2 < QD to satisfy Condition (A.1).
Market-maker 1 thus posts the lowest selling price in venue D and the highest bid price in venue S. The
ask price aD1 and the bid price bS1 are such that they must satisfy the set of conditions (ii) to (iii’) that
we rewrite as follows:

ii’ and iii : r1(QD) + ρσ2(QS) ≤ aD1 < r2(QD),

ii and iii’ : r2(QS) < bS1 ≤ r1(QS) + ρσ2QD.

The natural candidates for the equilibrium are aD1 = r2(QD)− ε and bS1 = r2(QS) + ε. These equilibrium
prices must satisfy the following inequality aD1 QD+bS1QS < (aD2 QD+bS2QS 6)TC2(QD+QS) (condition
(i’)). It is however not the case, implying that this constraint is binding and equilibrium prices must be
such that:

(aD1 )∗ = r2(QD +QS)
(QD +QS)

QD
+ (bS1 )∗

(−QS)

QD
− ε. (A.4)

First, using the expression of (aD1 )∗ defined in Eq. (A.4) in market-maker 1’s trading profit, we obtain
v1(QD +QS) = ρσ2(I1 − I2)(QD +QS). This expression does not depend on equilibrium prices. Conse-
quently, there exists a continuum of prices that may sustain the equilibrium. Second, using (aD1 )∗ defined
in Eq. (A.4) in conditions (ii’) and (iii) combined, we get that (bS1 )∗ must satisfy:

ii’ and iii : r2(QS)− ρσ2(I1 − I2)
QD
−QS

≤ (bS1 )∗ < r2(QS) + ρσ2QD.

We also know from conditions (ii) and (iii’) combined that (bS1 )∗ is such that:

ii and iii’ : r2(QS) < (bS1 )∗ ≤ r1(QS) + ρσ2QD.

Since I1 > I2, we however have r2(QS) − ρσ2(I1 − I2) QD
−QS < r2(QS) and r1(QS) + ρσ2QD < r2(QS) +

ρσ2QD. The second inequality defined by (ii) and (iii’) combined is constraining both the minimum and
the maximum possible bid price in venue S. Within all equilibria defined by (aD1 )∗ in Eq. (A.4) and by
(bS1 )∗ ∈ (r2(QS) + ε, r1(QS) + ρσ2QD + ε] we select the only equilibrium such that prices are continuous
at I1 − I2 = QD, that is, (aD1 )∗ = r2(QD) + ρσ2(QS) − ε ≡ r̂2(QD) − ε, from which we deduce that
(bS2 )∗ = r2(QS) + ε.
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Case 2. Suppose that (I1 − I2 −QD) ×QS < 0 (“Specialization”). From Lemma 1, we know
that market-maker 1 posts the best price in venue D while market-maker 2 posts the best price in venue
S. We now have to consider two sub-cases according to the sign of QS .

Case 2.1. Suppose that QS > 0. In that case, we must have I1 − I2 < QD to satisfy Condition (A.1).
The ask price aD1 posted by market-maker 1 and the ask price aS2 posted by market-maker 2 are such
that they must satisfy the set of conditions I to III’, from which we deduce that:

I and III’ : r1(QD) ≤ aD1 < aD2 < r2(QD) + ρσ2QS ,

I’ and III : r2(QS) ≤ aS2 < aS1 < r1(QS) + ρσ2QD.

The candidates for the equilibrium are aD1 = r2(QD) + ρσ2QS − ε and aS2 = r1(QS) + ρσ2QD − ε. These
equilibrium prices must satisfy the following inequality aS2QS − aD1 QD(> aS2QS − aD2 QD) > r2(QS)QS −
r2(QD)QD (condition (II’)). It is however not the case, implying that this constraint is binding and
equilibrium prices must be such that:

(aD1 )∗ = r2(QD) + ((aS2 )∗ − r2(QS))
QS
QD
− ε. (A.5)

First, if (aD1 )∗ defined in Eq. (A.5), then condition II always holds (given that (I1 − I2)(QD −QS) > 0).
Second, using (aD1 )∗ defined in Eq. (A.5) in conditions I and III’ and I’ and III combined, we get that
(aS2 )∗ must satisfy the following inequalities:

I and III’ : r2(QS) + (r1(QD)− r2(QD))
QD
QS
≤ (aS2 )∗ < r2(QS) + ρσ2QD,

I’ and III : r2(QS) ≤ (aS2 )∗ < r1(QS) + ρσ2QD.

Straightforward computations show that conditions I’ and III combined is constraining the set of possible
prices (aS2 )∗. Third, we compute market-makers’ equilibrium profits and show that, in that case, the
trading profit of market-maker 2 writes: v2(QS) = ((aS2 )∗ − r2(QS))QS . Using the expression of (aD2 )∗

defined in Eq. (A.5), we then obtain that the trading profit of market-maker 1 writes:

v1(QD) =

(
r2(QD) + ((aS2 )∗ − r2(QS))

QS
QD
− r1(QD)

)
QD.

We observe that market-makers’ profits are both strictly increasing in (aS2 )∗. Consequently, market-
makers’ reaction functions are such that the best ask price in venue S is the highest possible one. From
conditions I and III’ combined, we deduce that (aS)∗ is such that:

(aS2 )∗ = r1(QS) + ρσ2QD − ε, or (aS2 )∗ = r̂1(QS)− ε, (A.6)

from which we deduce that:
(aD1 )∗ = r̂2(QD)− ρσ2QS × η − ε, (A.7)

where η = (I1−I2)
QD

.

Consequently, there exists a unique equilibrium such that market-maker 1 posts (aD1 )∗ (defined in
Eq. (A.7)) and trades QD while market-maker 2 posts the best ask price equal to (aS2 )∗ (defined in Eq.
(A.6)) and trades QS .

Case 2.2. Suppose that QS < 0. In that case, we have I1−I2 > QD (Condition (A.1)). Market-maker
1 posts the best ask price in D while market-maker 2 posts the best bid price in S. The ask price aD1
in venue D and the bid price bS2 in venue S are respectively the maximum and the minimum prices that
satisfy the set of conditions I to III’. Combining Condition (II) and (III) and Condition (II’) and (III’),
we get:

II and III : r1(QD) ≤ aD1 < r2(QD) + ρσ2QS ,

II’ and III’ : r1(QS) + ρσ2QD < bS2 ≤ r2(QS).
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From the two first inequalities, aD1 = r2(QD)− ρσ2(−QS)− ε and bS2 = r1(QS) + ρσ2QD + ε are natural
candidates for the equilibrium. Straightforward computations show that they also satisfy conditions I
and I’.�

A.4 Proof of Proposition 2

We decompose the proof into two results, depending on the sign of QS .

Notations. For ease of computation in the proof, we use the following notations qm = Qm for a net-buying
order flow and qm = −Qm for a net-selling order flow (m = S,D). Let us also define vd = µ − ρσ2Id,
vu = µ− ρσ2Iu, x = µ− ρσ2I1 and y = µ− ρσ2I2. The support of the uniform distribution function of
x and y simplifies to [vu, vd]. We also note d = ρσ2qD and s = ρσ2qS . Finally, let am,+ (resp. am,−) be
the best ask price of venue m when liquidity demands have the same sign (resp. opposite sign) across
venues.

Result 1 Suppose that shocks have the same sign (with probability γ). Then, the expected ask prices
quoted in the venues D and S are equal to:

E
(
am,+

)
= µ− ρσ2 2Id + Iu

3
+
ρσ2qm

2
+ ρσ2q−m

(
qD

Iu − Id
− 1

3

(
qD

Iu − Id

)2
)
,m = S,D. (A.8)

Proof. We first compute the expected ask that prevails in venue D. By definition,

E
(
aD,+

)
= E

(
min

(
aD1 , a

D
2

)
1QD>01QS>0

)
.

Given Proposition 1, the notations defined above, and the symmetry of our hypotheses, the latter
equation writes:

E
(
aD,+

)
=

2

(vd − vu)
2

[∫ vd−d

vu

∫ vd

x+d

(y +
d

2
)dydx+

∫ vd

vu

∫ vd

x

(
y +

d

2
+ s

(
d− (y − x)

d

))
dydx

−
∫ vd−d

vu

∫ vd

x+d

(
y +

d

2
+ s

(
d− (y − x)

d

))
dydx

]
. (A.9)

We now turn to the expected ask prevailing in venue S using a similar reasoning. The expression writes:

E
(
aS,+

)
= E

(
min

(
aS1 , a

S
2

)
1QD>01QS>0

)
=

2

(vd − vu)
2

[∫ vd−d

vu

∫ vd

x+d

(y +
s

2
)dydx+

∫ vd

vu

∫ vd

x

(
x+

s

2
+ d
)
dydx

−
∫ vd−d

vu

∫ vd

x+d

(
x+

s

2
+ d
)
dydx

]
. (A.10)

Computations based on Eq. (A.9) and on Eq. (A.10) yield the expressions given in Eq. (A.8) for m = D
and m = S respectively. Q.E.D.

Result 2 Suppose that shocks have opposite signs (with probability 1 − γ), then the expected ask prices
in venues D and S respectively write:

E
(
aD,−

)
= µ− ρσ2 2Id + Iu

3
+
ρσ2qD

2
− ρσ2qS , (A.11)

E
(
aS,−

)
= µ− ρσ2 2Id + Iu

3
+
ρσ2qS

2
− ρσ2qD +

(qD)
2

(Iu − Id)
− (qD)

3

3 (Iu − Id)2
. (A.12)

Proof. We first compute the expected best ask prevailing in venue D (considering a sell shock in venue
S):

E
(
aD,−

)
= E

(
min

(
aD1 , a

D
2

)
1QD>01QS<0

)
,
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which rewrites:

E
(
aD,−

)
=

2

(vd − vu)
2 (

∫ vd−d

vu

∫ x+d

vu

(y +
d

2
− s)dydx

+

∫ vd

vu

∫ vd

x

(y +
d

2
− s)dydx−

∫ vd−d

vu

∫ vd

x+d

(y +
d

2
− s)dydx). (A.13)

Eq. (A.11) immediately follows.

Symmetrically, the expected best ask prevailing in market S (considering now a sell shock in venue D)
writes:

E(aS,−) =
2

(vd − vu)2

(∫ vd

vu−d

∫ x+d

vu

(x+
s

2
+ d)dydx+

∫ vd

vu

∫ x

vu

(y +
s

2
)dydx

−
∫ vd

vu−d

∫ x+d

vu

(y +
s

2
)dydx

)
. (A.14)

Computations yield Eq. (A.12). Q.E.D.

Let us define the half-spread as sm = am − µ and φm = qm
Iu−Id . Proposition 2 is then obtained from

Results 1 and 2 considering the extensive form of the game represented in Figure 2. �

A.5 Proof of Corollary 1

Remind that ac denotes the lowest ask price in a centralized market. From Ho and Stoll (1983), we know
that:

E (ac) = µ− ρσ2 2Id + Iu
3

+
ρσ2(qm + q−m)

2
. (A.15)

Using Eq. (A.8), (A.11) and (A.20) and the symmetry of the game, we deduce that the difference in
expected transactions costs between a fragmented and a centralized market is:

∆E(TTrC) = γ
(
E
(
aD,+

)
qD + E

(
aS,+

)
qS − E (ac) (qD + qS)

)
+ (1− γ)

(
E
(
aD,−

)
qD − E

(
b
S,−)

qS − E (ac) (qD − qS)
)
.

After straightforward computations the latter expression is equal to:

∆E(TTrC) = ρσ2qS (Iu − Id)
(
− (γ + 1)

3

)
Pγ(φD), (A.16)

where Pγ(x) = x3 − 3x2 + 3
(γ+1)x+ (γ−1)

(γ+1) for x ∈ [0, 1], and φD = qD
Iu−Id .

To investigate whether expected transaction costs are larger or smaller in a centralized market, let us
analyze the sign of the cubic polynomial Pγ . First, note that:

P ′γ (x) = 3x2 − 6x+
3

(1 + γ)
= 3

(
x−

(
1−

√
γ

1 + γ

))(
x−

(
1 +

√
γ

1 + γ

))
.

Given that x ∈ [0, 1], then x −
(

1 +
√

γ
1+γ

)
< 0, and the sign of P ′γ (x) only depends on the sign of(

x−
(

1−
√

γ
1+γ

))
. Pγ is increasing if x <

(
1−

√
γ

1+γ

)
and is decreasing if x >

(
1−

√
γ

1+γ

)
. Thus,

the local maximum is Pγ(1−
√

γ
1+γ ) =

γ(−1+2
√

γ
1+γ )

1+γ .

• Consider the case where γ ≤ 1
3 . Straightforward computations show that Pγ(1 −

√
γ

1+γ ) ≤ 0 (with

Pγ(1−
√

γ
1+γ ) = 0 if γ = 1

3 ). We therefore deduce that Pγ ≤ 0, i.e., ∆E(TTrC) > 0 if γ ≤ 1
3 .

• Consider now the case where γ > 1
3 . We can show that Pγ > 0, or, equivalently, ∆E(TTrC) < 0 iff

x ∈ [Φ1
γ ,Φ

2
γ ] where Pγ(Φ1

γ) = 0 = Pγ(Φ2
γ). Note that if γ = 1, then it is direct to show that P1 > 0 if
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x ∈ [0, (3−
√
3)

2 ], or equivalently, ∆E(TTrC) < 0 iff φD < (3−
√
3)

2 .�

A.6 Proof of Proposition 3

By definition, Cov(sD, sS) = γCov(aD,+−µ, aS,+−µ)+(1−γ)Cov(aD,−−µ, µ−bS,−) = γCov(aD,+, aS,+)−
(1− γ)Cov(aD,−, b

S,−
). We thus decompose the proof into two results, depending on the sign of shocks

across venues (similar or opposite).

Result 3 Suppose that shocks have the same sign (with probability γ). The covariance between the ask
price in venue D and the one in venue S is equal to:

Cov(aD,+, aS,+)

(ρσ2)2(Iu − Id)2
=

1

18
− φD

(
−φD − φS

6
+

2(φS − φD)

9
φD +

15φS − φD
12

φ2D +
2φS

3
φ3D +

φS
9
φ4D

)
,

(A.17)
where φm = qm

(Iu−Id) , m = D,S.

Proof. By definition, E
(
aD,+aS,+

)
= E

(
min

(
aD1 , a

D
2

)
×min

(
aS1 , a

S
2

)
1QD>01QS>0

)
. Using Proposi-

tion 1, and notations defined above, we get:

E
(
aD,+aS,+

)
=

2

(vd − vu)2

[∫ vd−d

vu

∫ vd−d

vu

(y +
s

2
)(y +

d

2
)dydx

+

∫ vd

vu

∫ vd

x

(x+
s

2
+ d)(y +

d

2
+ s

(
d− (y − x)

d

)
)dydx

−
∫ vd−d

vu

∫ vd

x+d

(x+
s

2
+ d)(y +

d

2
+ s

(
d− (y − x)

d

)
)

]
. (A.18)

To compute Cov(aD,+, aS,+) = E(aD,+aS,+)−E(aD,+)E(aS,+), we use the expression above and Result
1 for expressions of E

(
aD,+

)
and E

(
aS,+

)
. Computations yield Eq. (A.17). Q.E.D.

Result 4 Suppose that shocks have opposite signs (1−γ). The covariance between the best price in venue
D and the one in venue S writes:

Cov
(
aD,−, b

S,−)
(ρσ2)2(Iu − Id)2

=
1

36
+

(φD)2

36

(
3 (φD)

2 − 8φD + 6
)
. (A.19)

Proof. If a sell shock hits venue S, the expected best bid in venue S is such that E(b
S,−

) =
E(max(bS1 , b

S
2 )1QD>01QS<0), or:

E(b
S,−

) =
2

(vd − vu)
2 (

∫ vd−d

vu

∫ vd

x+d

(x+
s

2
+ d)dydx+

∫ vd

vu

∫ vd

x

(y +
s

2
)dydx

−
∫ vd−d

vu

∫ vd

x+d

(y +
s

2
)dydx) (A.20)

When a buy shock hits venue D, the expected best ask price of venue D is thus described by Eq. (A.11).

Then E(aD,−b
S,−

) writes:

E(aD,−b
S,−

) =
2

(vd − vu)
2 [

∫ vd−d

vu

∫ vd

x+d

(y +
d

2
− s)(x+

s

2
+ d)dydx

+

∫ vd

vu

∫ vd

x

(y +
d

2
− s)(y +

s

2
)dydx−

∫ vd−d

vu

∫ vd

x+d

(y +
d

2
− s)(y +

s

2
)dydx]. (A.21)

Using Equations (A.11), (A.20) and (A.21), we can deduce the expression of Cov(aD,−, b
S,−

) described
in Eq. (A.19). Q.E.D.
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From Results 3 and 4 and considering the extensive form of the game represented in Figure 2, we deduce
that spreads co-vary jointly as follows:

cov(sD, sS) = λ
(
ρσ2(Iu − Id)

)2(
γ × gφD (φS) + aφD

)
(A.22)

where aφD and gφD such that: aφD = −1
36 − (φD)2( 1

6 −
2
9φD) and

gφD (x) =
3

36
− (φD)4

12
− xφD

(
(φD)4

9
− 2(φD)3

3
+

5(φD)2

4
− 8φD

9
+

1

6

)
. (A.23)

It is straightforward to show that gφD is positive for any φD. We thus deduce that the covariance
cov(sD, sS) is an increasing function of γ.�
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Online Appendix to �Fragmentation and Strategic

Market-Making�

Laurence Daures Lescourret Sophie Moinas

The aim of this online Appendix is to present a number of additional results and robustness

checks. Appendix A analyzes quotes posted by non-strategic market-makers, and shows that

the �ultra-competitive e�ect� uncovered in the baseline model results from the strategic behavior

of market-makers and not from a pure inventory management e�ect. Appendix B investigates

whether a fragmented market with multi-venue market-makers increases the extent to which

market-makers can share risks. Appendix C aims at relaxing the hypothesis that the market is

exogenously fragmented, and shows that, even in the case of an endogenous fragmentation, the

market remains fragmented. Appendix D investigates whether risk-averse market-makers would

prefer trading and sharing risks together in a pre-trading stage. Finally, Appendix E shows that

our model does not allow any trade-through. Prices are di�erent across trading venues because

of di�erence in orders size or direction.
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A Non-strategic quotes in a fragmented market

Our paper assume that market-makers behave strategically within and across trading venues.

Most of the literature however analyzes market fragmentation by assuming that liquidity suppli-

ers behave competitively, setting prices such that a zero-pro�t condition holds. This appendix

analyzes prices posted by competitive risk-averse market makers in our two-market setting. It

allows us to better understand the impact of assuming strategic multi-venue market-makers. It

also allows us to show that the �ultra-competitive e�ect� obtained in the model resulting from

the strategic behavior of risk-averse market-makers is not obtained under the same conditions in

a non-strategic inventory management model.

Proposition A.1 Assume that I1 > I2 and QD + QS > 0, and that market-makers behave

competitively. Then they quote their true value for the asset, i.e., their own reservation price,

that is:

1. If (I1 − I2 − QD)QS > 0, then market-maker 1, with a longer position, posts the best prices

across venues, that is:

(pm1 )NS = r1(QD +QS) for m = D,S (1)

2. If (I1− I2−QD)QS ≤ 0, the longer market-maker posts the best price in the dominant market

while the shorter market-maker posts the best price in the satellite market, that is:

((aD1 )
NS , (pS2 )

NS) = (r1(QD), r2(QS)) (2)

where pmi is a selling price when Qm is a buy demand, and a bid price when Qm is a sell demand

(i = 1, 2, and m = D,S).

In a multi-venue environment, when intermediaries are competitive, best prices sometimes

di�er across venues for two reasons. First, when (I1 − I2 − QD)QS ≤ 0, which is equivalent

to TC1(QD +QS) ≥ TC1(QD) + TC2(QS), market-maker 1 is capacity-constrained and cannot

absorb both shocks. She is thus constrained to absorb the most e�cient shock (in terms of

risk sharing), which is the larger buy demand QD sent to the dominant venue (see Lemma 1

in the baseline model). She thus posts her true value for executing QD, while market-maker 2
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executes the shock in the satellite market at his reservation price for this liquidity demand QS .

Second, because market-makers' reservation quotes re�ect the price impact of trades of di�erent

size (|QD| > |QS |), when market-makers are not strategic, they post prices that re�ect their true

value for the magnitude of orders to execute, which sometimes di�er (alternatively QD +QS or

QD for market-maker 1, or QS for market-maker 2).

Let us now analyze the impact in terms of total trading costs. We assume also that market-

makers behave non strategically in a centralized market, and thus post their true value for the

asset. Market-maker 1 executes the net order �ow at her reservation price r1(QD + QS)(<

r2(QD +QS)). According to Lemma 1 in the baseline model, we have two cases to consider:

• If (I1 − I2 − QD)QS ≤ 0, then total trading costs are the same. Fragmentation is thus

innocuous in this case.

• If (I1 − I2 −QD)QS ≤ 0, then the di�erence in total trading costs write:

r1(QD)QD+r2(QS)QS−r1(QD+QS)× (QD+QS) = ρ×σ2(I1−I2−QD)×QS < 0. (3)

We thus deduce that market fragmentation is good for total trading costs in this case.

In a two-venue setting with competitive market-makers, total trading costs are lower than in a

centralized market. It is driven by a better risk sharing in the case market-maker 1 is capacity-

constrained. This outcome is opposite to that obtained in our two-venue strategic duopoly model.

Recall that when market-maker 1 is capacity-constrained, market-makers price high, by posting

their �stay-at-home� price which takes into account their monopolist situation in their �home�

venue. A better risk sharing leads to less competitive prices in our baseline model (see Appendix

B for a more formal proof on risk sharing).

In sum, the �intense competition� e�ect results from low divergence in inventories when

market-makers behave non-strategically, whereas this e�ect is obtained when divergence in in-

ventories is high if intermediaries behave strategically. Our main empirical result contained in

Table 3 in the main model corroborates strategic inventory management.
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B Risk-sharing e�ciency in a fragmented market

This Appendix explores the impact of the possibility to absorb the preferred shock (what we

termed in the baseline model as the shock in their �home� venue) on risk sharing among market-

makers. It is worth noticing that, when intermediaries specialize in their �home� venue, they

obtain a better allocation of risk compared to the centralized market, as shown in the following

corollary.

Corollary B.1 A fragmented market generates a more e�cient outcome in risk sharing among

market-makers than a centralized market in the sense that market-makers bear lower aggregate

security risk.

Proof. In our set up (equal risk aversion and identical pre-trade inventory distribution), we can

measure intermediaries' aggregate post-trade risk by the sum of the variance of their post-trade

wealths (Yin, 2005).

1. In a centralized market, the longer market-maker executes the net order �ow. The aggregate

post-trade risk, denoted by (σ2agg)
c, is thus equal to:

(σ2agg)
c = V ar((I1 −QD −QS)ṽ) + V ar(I2 × ṽ). (4)

2. In a fragmented market, post-trade allocations depend on the sign of (I1 − I2 −QD )QS
(See Lemma 1 in the baseline model).

• If (I1 − I2 −QD)QS > 0, the aggregate post-trade risk is equal to that in a centralized

market, since the longer market-maker consolidates the global order �ow:

(σ2agg)
cons = V ar((I1 −QD −QS)ṽ) + V ar(I2 × ṽ) = (σ2agg)

c.

• If (I1 − I2 −QD)QS ≤ 0, each shock is absorbed by a di�erent market-maker and the

aggregate post-trade risk is equal to:

(σ2agg)
frag = V ar((I1 −QD)ṽ) + V ar((I2 −QS)ṽ). (5)

Then, subtracting Eq. (5) from Eq. (4) is equal to (σ2agg)
frag − (σ2agg)

c = 2QS(I1 − I2 −
QD) < 0, which is negative in the case considered here.�

The intuition is as follows: in a centralized market, orders are crossed when they are of

opposite direction. This implies that, if QS < 0, market-makers only absorb the remaining

order imbalance of QD + QS < QD. In a multiple-venue setting, orders cannot be crossed,

market-makers are however able to choose to execute only trades with a desirable impact on

their inventory position. In the case QS < 0, market-maker 1 chooses to absorb only QD when
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she is very long (I1−I1−QD > 0), while the shorter market-maker absorb the shock in S, which

results in a better risk sharing than in the centralized case. The better allocation of risk does not

however necessarily lead to more competitive prices as detailed in Proposition 1 in the baseline

model. This result is in the spirit of the one obtained in Biais et al. (1998).
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C Endogenous fragmentation of the total order �ow

This Appendix extends the baseline model by assuming that a global liquidity demander has

access to all venues simultaneously (through, for example, a smart order router). Let us assume

that this liquidity demander must trade a given quantity denoted Q. He minimizes his total

trading cost by optimally splitting orders across venues. Note that this section only extends the

case in which shocks have exogenously the same sign in our baseline model. We also assume that

market-maker 1 is longer than market-maker 2 and that Q is a buy order �ow (Q > 0). Results

for the case in which market-maker 2 is longer that market-maker 1 or for the case of a sell order

are deduced by symmetry.

We consider that the global liquidity demander enjoys some private bene�ts denoted δm to

trade in venue m. We assume that δD > δS , consistently with the dominant venue de�ned in the

baseline model, and that δD − δS < ρσ2Q.1,2 The liquidity demander chooses the proportion α

of the order �ow routed to venue D (and (1−α) to venue S) so as to minimize his total trading

cost.3

Based on assumptions in the baseline model, we suppose that the liquidity demander splits

orders such that a larger demand is sent to the dominant market (αQ = QD ≥ QS = (1−α)Q).4

We thus investigates whether there exists an equilibrium when the liquidity trader optimally

split orders across venues such that α ∈ [12 ; 1). In this interval, total trading costs write:

TTrC(α) = [((aD1 )
∗(αQ)− δD − µ)α+ ((aSi )

∗((1− α)Q)− δS − µ)(1− α)]×Q. (6)

where i = 1, 2 depending on the divergence in inventories (i = 1 if I1− I2 > αQ, i = 2 otherwise,

see Lemma 1 in the baseline model).

The following Proposition shows the existence and the characterization of an equilibrium α∗.

1Numerous studies (see Froot and Dabora, 1999; Foerster and Karolyi, 1999; or Gagnon and Karolyi, 2010,
among others) document the existence of a domestic bias, due to investment barriers, e.g., regulatory barriers,
taxes, or information constraints. In Europe, brokerage fees charged in 2013 to trade in a foreign country or
trading venue are 15 to 40% higher than those charged to trade in a national exchange, but the situation was even
worse back in 2007 (see documents on Fees and Commissions of various brokers from 2007 to 2013). Di�erences
in private bene�ts might also capture di�erences in terms of maker/taker spreads.

2When δD − δS ≥ ρσ2Q, the private bene�ts of trading in venue D are so large that it is never optimal for
investors to split the quantity to be traded across trading platforms.

3Because markets are transparent in our set up, we assume that liquidity demanders perfectly anticipate what
the best bid and ask prices will be.

4A complete proof of the existence and characterization of all the equilibria is available on request.
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Proposition C.1 If 2ρσ2(I1 − I2) > (δD − δS), there exists an interior equilibrium α∗, such

that it is optimal for the global liquidity demander to split orders across venues.

Proof. We want to show that there exists an interior equilibrium, that is, an α∗ ∈ [12 , 1) that
minimizes transaction costs TTrC(.) described by Eq. (6).

• We �rst conjecture that there exists an equilibrium characterized by a high divergence in

intermediaries' inventories, i.e., I1 − I2 − αQ > 0, or, 1
2 ≤ α < I1−I2

Q . The �rst order condition

(FOC) yields:

αH =
1

2
+
δD − δS
2ρσ2Q

.

The two conditions for an interior equilibrium α ∈ [12 , 1) to exist are thus: i. a condition ensuring

that our conjecture holds, i.e., αH < I1−I2
Q , and ii. a condition ensuring that the equilibrium is

interior, i.e., αH < 1. The latter always holds under our assumption δD− δS < ρσ2Q. Condition
i. rewrites as follows:

I1 − I2 >
1

2

(
Q+

δD − δS
ρσ2

)
. (7)

• We now conjecture that there exists an equilibrium characterized by a low divergence in inter-

mediaries' inventories, i.e., α ≥ I1−I2
Q . The FOC yields:

αL =
1

2
− δD − δS

2ρσ2Q
+

(I1 − I2)
Q

.

The three conditions for an interior equilibrium to exist are such that: (i) our conjecture must

hold, i.e., αL ≥ I1−I2
Q ; (ii) there exists an interior equilibrium, i.e., αL < 1; and (iii) αL ≥ 1

2 .

Condition (i) always holds under our assumption δD − δS < ρσ2Q. Condition (ii) translates

into I1 − I2 < Q
2 + δD−δS

2ρσ2 , which is the complement of the condition (7) above. Notice that if

I1 − I2 = Q
2 + δD−δS

2ρσ2 , then there exists an equilibrium such that α∗ = 1. Condition (iii) imposes

2ρσ2(I1 − I2) ≥ δD − δS .5�

The liquidity demander trades o� the bene�ts of price competition in a two-venue structure

(related to the divergence of inventories, I1 − I2) to the private bene�ts of sending the entire

demand to the dominant market (δD − δS). We conclude that, even when the demand splitting

is endogenized, it is still the case that the market remains ex ante fragmented.

5If 2ρσ2(I1 − I2) < δD − δS , there is no solution to the FOC in[ 1
2
, 1). There is a corner equilibrium: α∗ = 1.

7



D Introduction of a pre-stage inter-dealer market

This appendix analyzes whether our results are sensitive to the introduction of a pre-stage inter-

dealer market. We assume that, at stage 0, intermediaries are able to optimally share inventory

risks before setting quotes in the customer-dealer market. It could be the case that they prefer

sharing risks in an inter-dealer market to avoid multi-venue competition in the customer-dealer

market starting at stage 1.

In a conservative approach, we assume that intermediaries independently and non-strategically

maximize their expected pro�t in the inter-dealer market, then maximize their expected pro�t

in the customer-dealer market (the model is solved sequentially).6

Even in the presence of a pre-stage risk-sharing round, intermediaries may �nd more pro�table

ex ante not to trade in the inter-dealer market as shown by the following Corollary:

Corollary D.1 The set of parameters for which intermediaries choose not to trade in the inter-

dealer market is non-empty.

Proof. We consider two stages.

First stage: the inter-dealer market (ID). If market-maker 1 sells a quantity q at price p
to market-maker 2 in the inter-dealer market, the pro�ts of market-maker 1 and 2 respectively

write: (
vID1 =

[
p− µ− ρσ2

2
(q − 2I1)

]
q; vID2 =

[
µ− ρσ2

2
(q + 2I2)− p

]
q

)
.

We maximize market-makers' pro�ts with respect to q to �nd market-maker 1's supply function,

and market-maker 2's demand function. The crossing of the supply and demand curves yields

the following symmetric equilibrium in the inter-dealer market:(
q∗ID =

I1 − I2
2

; p∗ID = µ− ρσ2 I1 + I2
2

)
.

At equilibrium in the inter-dealer market, market-makers' pro�ts write
(
vID1

)∗
=

(
vID2

)∗
=

ρσ2

8 (I1 − I2)2. Notice that market-makers �nd it optimal to perfectly share risk: after trading

in the inter-dealer market, market-makers 1 and 2 end up with the same inventory position,

I ′1 = I ′2.

Second stage: the customer-dealer market (CD). Given market-makers' inventory posi-

tions after their trades in the inter-dealer market, their equilibrium pro�ts in the customer-dealer

market can be computed at the limit when I ′1 → I ′2 using the formula derived in the proof of

6In the case in which intermediaries strategically trade in the inter-dealer market after observing the realization
of the order �ows in venue D and S, we �nd that they may �nd optimal to reinforce the divergence in inventories
in order to maximize their trading pro�t in the customer-dealer market. The inter-dealer market is not a way to
optimize risk-sharing, but to enhance divergence in inventories. Multi-venue competition in the customer-dealer
is thus emphasized in this case.
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Proposition 1. We �nd:
(
v
CD|ID
1

)∗
=

(
v
CD|ID
2

)∗
= ρσ2qDqS .

Comparison. We �nally compute market-makers' expected pro�ts in the presence of an inter-

dealer market, namely V CD+ID = E
((
v
CD|ID
i

)∗
+
(
vIDi

)∗)
, and compare them with the ex-

pected pro�ts they obtain in the absence of an inter-dealer market, namely
(
V CD

)∗
= E

((
vCDi

)∗)
.

Computations yield:

V CD+ID =
ρσ2

48
(Iu − Id)2 + γρσ2qDqS , (8)

and

V CD =
ρσ2

6
(Iu − Id) (qD + (2γ − 1)qS)

+
ρσ2qS

(Iu − Id)2
×
[
(1− γ)(Iu − Id)3 −

(
3(1− γ)qD + 1

2γqS
)
(Iu − Id)2

+
{
(1− γ)qD + 1

2γqS
}
qD (3(Iu − Id)− qD)

]
. (9)

To assess the impact of the existence of an inter-dealer market on intermediaries' expected pro�ts,

one needs to compare the expressions given in Eq. (8) and (9). Closed-form solutions are di�cult

to interpret. However there exist parameters' values such that intermediaries would prefer not to

share risk in an inter-dealer market, that is, V CD > V CD+ID. Figure 1 shows that intermediaries

are better o� trading ex ante in an inter-dealer market only when (i) the probability that shocks

have the same sign, γ, is high, and (ii) the size of the liquidity demand sent to the satellite venue,

qS , is small.

As illustrated by Figure 1, there exist cases (white squared surface) in which intermediaries

�nd more pro�table ex ante not to trade in the inter-dealer market (for di�erent values of γ and

qS) and trade directly in the customer-dealer market.�

CD + ID
CD

"Parameters: rho1; sigma²0.001; Iu12,000; Id0; phi_d512"

Figure 1: Impact of the inter-dealer market on dealers' expected pro�ts.

Figure 1 represents intermediaries' expected pro�ts with or without an initial trading round in an
inter-dealer market, as a function of γ (the probability that shocks have the same sign) and φS ,
for φS ≤ φD and φD ≤ Iu − Id. The white squared surface plots the expected trading pro�t in
the customer-dealer market (CD) only, the grey squared surface plots the total expected trading
pro�t if intermediaries engage in an inter-dealer round before trading in the customer-dealer market
(CD+ID).
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E No trade-through

This section explores whether a market order can execute at a price worse than the best quoted

price, termed as trade-through. Note that a trade-through can only occur if orders sent to S

and D have the same sign. The question is thus: do we observe di�erent prices across trading

venues when orders QD and QS are of same direction and same size?

Corollary E.1 There is no trade-through possible in our model.

Proof : We use Proposition 1 when QD and QS have the same sign, and consider that QS =
QD = Q.

• If (I1 − I2 − QD)QS > 0 and QD = QS = Q > 0, then it is straightforward to show that

(aD1 )
∗ = (aS1 )

∗ = r2(Q).

• When (I1 − I2 − QD)QS ≤ 0 and QD = QS = Q > 0, easy computations (below) show

that (aD1 )
∗ = (aS2 )

∗.

Observe that r̂2(Q) − ρσ2Q × η = r2(Q) + ρσ2Q − ρσ2(I1 − I2) = r1(Q) + ρσ2Q = r̂1(Q). We

deduce that (aD1 )
∗ = (aS2 )

∗. �
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